全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

First Principles Calculation of Magnetic Resonance Properties of Cu2-δX (X = Se, S, Te)

DOI: 10.4236/jamp.2021.96085, PP. 1245-1256

Keywords: Copper Chalcogenides, Chemical Shift, First Principles Calculation

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to have a better understanding of the electronic structures and physical properties of Cu2-δX (X = Se, S, Te) copper chalcogenides. First principles were performed to calculate the chemical shift, band structure, and electron density of states of Cu2-δX (X = Se, S, Te). By comparing our calculation results with previous experimental works, we found that the predicted electronic structures of Cu2Se, Cu2Te and Cu2S transform from semimetal to semiconductor after adding on-site Coulomb U, which reflects the real properties of the materials. By using (Density Functional Theory) DFT + U method, the calculation result is close to the real electronic structure. The calculation result of chemical shift of adding U does not reach the ideal expectation, and the reason is not clear at present. In this paper, the theoretical electronic structures of Cu2Se, Cu2Te and Cu2S are better calculated by DFT + U method and compared with the actual properties. The effect of Cu-s electron on the chemical shift is understood, and a theoretical result of the chemical shift is calculated, which provides a powerful reference for the subsequent research and understanding of the electronic structure and physical properties of the compounds with S groups of Cu.

References

[1]  Zhao, Y. and Clemens, B. (2012) Development of Plasmonic Semiconductor Nano Materials with Copper Chalcogenides for a Future with Sustainable Energy Materials. Energy & Environmental Science, 5, 5564-5576.
https://doi.org/10.1039/C1EE02734D
[2]  Yu, J., Zhao, K., Qiu, P., Shi, X. and Chen, L. (2017) Thermoelectric Properties of Copper-Deficient Cu2-xSe (0.05≤x≤0.25) Binary Compounds. Ceramics International, 43, 11142-11148.
https://doi.org/10.1016/j.ceramint.2017.05.161
[3]  Liu, H., Shi, X., Xu, F., Zhang, L., Zhang, W., Chen, L., et al. (2012) Copper Ion Liquid-Like Thermoelectrics. Nature Materials, 11, 422-425.
https://doi.org/10.1038/nmat3273
[4]  Chen, H.Y., Yue, Z., Ren, D., Zeng, H. and Wei, T. (2019) Thermal Conductivity during Phase Transitions. Advanced Materials, 31, Article ID: 1806518.
https://doi.org/10.1002/adma.201806518
[5]  Byeon, D., Sobota, R., Delime-Codrin, K., Choi, S., Hirata, K., Adachi, M., et al. (2019) Discovery of Colossal Seebeck Effect in Metallic Cu2Se. Nature Communications, 10, Article No. 72.
https://doi.org/10.1038/s41467-018-07877-5
[6]  Liu, H., Yuan, X., Lu, P., Shi, X., Xu, F., He, Y., et al. (2013) Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1-xIx. Advanced Materials, 25, 6607-6612.
https://doi.org/10.1002/adma.201302660
[7]  Sedat, B., Chi, H., Salvador, J.R. and Uher, C. (2013) Thermoelectric Properties of Ag-Doped Cu2Se and Cu2Te. Journal of Materials Chemistry A, 1, 12478-12484.
https://doi.org/10.1039/C3TA12508D
[8]  Zhuo, K., Wang, J., Gao, J., Landman, U. and Chou, M.-Y. (2020) Liquidlike Cu Atom Diffusion in Weakly Ionic Compounds Cu2S and Cu2Se. Physical Review B, 102, Article ID: 064201.
https://doi.org/10.1103/PhysRevB.102.064201
[9]  Bell, L.E. (2008) Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 321, 1457-1461.
https://doi.org/10.1126/science.1158899
[10]  Snyder, G.J. and Toberer, E.S. (2008) Complex Thermoelectric Materials. Nature Mater, 7, 105-114.
https://doi.org/10.1038/nmat2090
[11]  Rau, H. (1974) Homogeneity Range of Cubic High Temperature Cuprous Sulfide (Digenite). Journal of the Physics and Chemistry of Solids, 35, 1415-1424.
https://doi.org/10.1016/S0022-3697(74)80247-7
[12]  Okimura, H., Matsumae, T. and Makabe, R. (1980) Electrical Properties of Cu2-xSe Thin Films and Their Application for Solar Cells. Thin Solid Films, 71, 53-59.
https://doi.org/10.1016/0040-6090(80)90183-2
[13]  Okamoto, K. (1971) Thermoelectric Power and Phase Transition of Cu2Se. Japanese Journal of Applied Physics, 10, 508.
https://doi.org/10.1143/JJAP.10.508
[14]  Lu, P., Qiu, W., Wei, Y., Zhu, C., Shi, X., Chen, L., et al. (2020) The Order-Disorder Transition in Cu2Se and Medium-Range Ordering in The High-Temperature Phase. Acta Crystallographica Section B: Structural Science Crystal Engineering and Materials, 76, 201-207.
https://doi.org/10.1107/S2052520620002164
[15]  Eikeland, E., Blichfeld, A.B., Borup, K.A., Zhao, K., Overgaard, J., et al. (2017) Crystal Structure across the Beta to Alpha Phase Transition in Thermoelectric Cu2-xSe. IUCrJ, 4, 476-485.
https://doi.org/10.1107/S2052252517005553
[16]  Boyce, J.B. and Huberman, B.A. (1979) Superionic Conductors: Transitions, Structures, Dynamics. Physics Reports, 51, 189-265.
https://doi.org/10.1016/0370-1573(79)90067-X
[17]  Nguyen, M.C., Choi, J.-H., Zhao, X., Wang, C.-Z., Zhang, Z. and Ho, K.-M. (2013) New Layered Structures of Cuprous Chalcogenides as Thin Film Solar Cell Materials: Cu2Te and Cu2Se. Physical Review Letters, 111, Article ID: 165502.
https://doi.org/10.1103/PhysRevLett.111.165502
[18]  Gulay, L., Daszkiewicz, M., Strok, O. and Pietraszko, A. (2011) Crystal Structure of Cu2Se. Chemistry of Metals and Alloys, 4, 200-205.
https://doi.org/10.30970/cma4.0184
[19]  Danilkin, S,A., Skomorokhov, A.N., Hoser, A., Fuess, H., Rajevac, V. and Bickulova, N.N. (2003) Crystal Structure and Lattice Dynamics of Superionic Copper Selenide Cu2-δSe. Journal of Alloys and Compounds, 361, 57-61.
https://doi.org/10.1016/S0925-8388(03)00439-0
[20]  Sirusi, A.A., Ballikaya, S., Uher, C. and Ross Jr., J.H. (2015) Low-Temperature Structure and Dynamics in Cu2Se. Journal of Physical Chemistry C, 119, 20293-20298.
https://doi.org/10.1021/acs.jpcc.5b06079
[21]  Brinkmann, D. (1992) NMR Studies of Superionic Conductors. Progress in Nuclear Magnetic Resonance Spectroscopy, 24, 527-552.
https://doi.org/10.1016/0079-6565(92)80009-5
[22]  Sirusi, A.A. and Ross Jr., J.H. (2017) Chapter Three: Recent NMR Studies of Thermoelectric Materials. Annual Reports on NMR Spectroscopy, 92, 137-198.
https://doi.org/10.1016/bs.arnmr.2017.04.002
[23]  Bikkulova, N.N., Beskrovnyœ, A.I., Yadrovskiœ, E.L., Skomorokhov, A.N., Stepanov, Y.M., Mikolaœchuk, A.N., et al. (2007) Lattice Dynamics and Ion Transport in Structurally Disordered Chalcogenides of Copper and Silver. Crystallography Reports, 52, 453-455.
https://doi.org/10.1134/S1063774507030194
[24]  Amamoto, K. and Kashida, S. (1991) X-ray Study of The Average Structures of Cu2Se and Cu1.8S in The Room Temperature and The High Temperature Phases. Journal of Solid State Chemistry, 93, 202-211.
https://doi.org/10.1016/0022-4596(91)90289-T
[25]  Asadov, Y.G., Rustamova, L.V., Gasimov, G.B., Jafarov, K.M. and Babajev, A.G. (1992) Structural Phase Transitions in Cu2-xTe Crystals (x=0.00, 0.10, 0.15, 0.20, 0.25). Phase Transitions, 38, 247-259.
https://doi.org/10.1080/01411599208213205
[26]  Asadov, Y.G., Asadova, S.Y., Movlamverdieva, A.I. and Isaev, F.K. (2002) Effect of Zinc Doping on the Phase-Transition Temperatures of Cu2Te. Inorganic Materials, 38, 1103-1108.
https://doi.org/10.1023/A:1020954230074
[27]  Chakrabarti, D.J. and Laughlin, D.E. (1983) The Cu-S (Copper-Sulfur) System. Bulletin of Alloy Phase Diagrams, 4, Article No. 254.
https://doi.org/10.1007/BF02868665
[28]  Chakrabarti, D.J. and Laughlin, D.E. (1981) The Cu-Se (Copper-Selenium) System. Bulletin of Alloy Phase Diagrams, 2, Article No. 305.
https://doi.org/10.1007/BF02868284
[29]  Will, G., Hinze, E. and Abdelrahman, A.R.M. (2002) Crystal Structure Analysis and Refinement of Digenite, Cu1.8S, in The Temperature Range 20 to 500 degrees C under controlled sulfur partial pressure. European Journal of Mineralogy, 14, 591-598.
https://doi.org/10.1127/0935-1221/2002/0014-0591
[30]  Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138.
https://doi.org/10.1103/PhysRev.140.A1133
[31]  Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for ab-Initio total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186.
https://doi.org/10.1103/PhysRevB.54.11169
[32]  Kresse, G. and Furthmüller, J. (1996) Efficiency of ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50.
https://doi.org/10.1016/0927-0256(96)00008-0
[33]  Becke, A.D. (2014) Perspective: Fifty Years of Density-Functional Theory in Chemical Physics. The Journal of Chemical Physics, 140, Article ID: 18A301.
https://doi.org/10.1063/1.4869598
[34]  Pedroza, L,S., da Silva, A.J.R. and Capelle, K. (2009) Gradient-Dependent Density Functionals of the Perdew-Burke-Ernzerhof Type for Atoms, Molecules, and Solids. Physical Review B, 79, Article ID: 201106(R).
https://doi.org/10.1103/PhysRevB.79.201106
[35]  Paier, J., Hirschl, R., Marsman, M. and Kresse, G. (2005) The Perdew-Burke-Ernzerhof Exchange-Correlation Functional Applied to the G2-1 Test Set Using a Plane-Wave Basis Set. The Journal of Chemical Physics, 122, Article ID: 234102.
https://doi.org/10.1063/1.1926272
[36]  Blochl, P.E. (1994) Projector Augmented-Wave Method. Physical Review B, 50, 17953-17979.
https://doi.org/10.1103/PhysRevB.50.17953
[37]  Marbella, L.E., Gan, X.Y., Derrick, C. and Kaseman, E. (2017) Correlating Carrier Density and Emergent Plasmonic Features in Cu2-xSe Nanoparticles. Nano Letters, 17, 2414-2419.
https://doi.org/10.1021/acs.nanolett.6b05420
[38]  Carter, G.C., Bennett, L.H. and Kahan, D.J. (1977) Metallic Shifts in NMR. Pergamon Press, Oxford.
[39]  Rasander, M., Bergqvist, L. and Delin, A. (2013) Density Functional Theory Study of the Electronic Structure of Fluorite Cu2Se. Journal of Physics: Condensed Matter, 25, Article ID: 125503.
https://doi.org/10.1088/0953-8984/25/12/125503

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133