全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Analog Method for Seasonal Forecasting in Northern High Latitudes

DOI: 10.4236/acs.2021.113028, PP. 469-485

Keywords: Arctic, Climate, Analog, Forecasting

Full-Text   Cite this paper   Add to My Lib

Abstract:

An analog forecast method designed for monthly and seasonal outlooks is applied to the Arctic. The analog selection process uses pattern matches based on agreement with historical data to identify past years with similar distributions of sea level pressure, upper-air geopotential height, surface and upper-air temperatures, precipitation, and sea surface temperatures. The evolution of the atmosphere in the analog years is then the basis of a prediction for the target year. Users can choose the predictor domain, the predictand domain, the variable to be predicted, and the number of antecedent months on which the analog selection is based. We provide an example of a monthly forecast generated by the analog forecast tool. In comparisons with operational dynamical model forecasts over the period 2012-2019, the analog system underperforms the dynamical models in middle latitudes but generally outperforms the dynamical models in monthly forecasts of surface air temperatures in the Arctic. The improvement over the dynamical models is especially apparent in the late summer and early autumn (August-October).

References

[1]  Lorenz, E.N. (1969) Atmospheric Predictability as Revealed by Naturally Occurring Analogues. Journal of the Atmospheric Sciences, 26, 636-646.
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
[2]  Bergen, R.E. and Harnack, R.P. (1982) Long-Range Temperature Prediction Using a Simple Analog Approach. Monthly Weather Review, 110, 1082-1099.
https://doi.org/10.1175/1520-0493(1982)110<1083:LRTPUA>2.0.CO;2
[3]  Gutzler, D.S. and Shukla, J. (1984) Analogs in the Wintertime 500 mb Height Field. Journal of the Atmospheric Sciences, 41, 177-189.
https://doi.org/10.1175/1520-0469(1984)041<0177:AITWMH>2.0.CO;2
[4]  Toth, Z. (1988) Long-Range Weather Forecasting Using an Analog Approach. Journal of Climate, 2, 594-607.
https://doi.org/10.1175/1520-0442(1989)002<0594:LRWFUA>2.0.CO;2
[5]  Van den Dool, H. (1989) A New Look at Weather Forecasting through Analogues. Monthly Weather Review, 117, 2230-2247.
https://doi.org/10.1175/1520-0493(1989)117<2230:ANLAWF>2.0.CO;2
[6]  NOAA (2018) El Nino Global Impacts.
https://www.climate.gov/enso
[7]  Monache, L.D., Eckel, F.A., Rife, D.L., Nagarajan, B. and Searight, L. (2013) Probabilistic Weather Prediction with an Analog Ensemble. Monthly Weather Review, 141, 3498-3516.
https://doi.org/10.1175/MWR-D-12-00281.1
[8]  Sperati, S., Alessandrini, S. and Monache, L.D. (2017) Gridded Probabilistic Weather Forecasts with an Analog Ensemble. Quarterly Journal of the Royal Meteorological Society, 143, 2874-2885.
https://doi.org/10.1002/qj.3137
[9]  Yu, H., Huang, J. and Chou, J. (2014) Improvement of Medium-Range Forecasts Using the Analog-Dynamical Method. Monthly Weather Review, 142, 1570-1587.
https://doi.org/10.1175/MWR-D-13-00250.1
[10]  Eckel, F.A. and Monache, L.D. (2015) A Hybrid NWP-Analog Ensemble. Monthly Weather Review, 144, 897-911.
https://doi.org/10.1175/MWR-D-15-0096.1
[11]  Chattopadhyay, A., Nabizadeh, E. and Hassanzadeh, P. (2020) Analog Forecasting of Extreme-Causing Weather Patterns Using Deep Learning. Journal of Advances in Modeling Earth Systems, 12, e2019MS001958.
https://doi.org/10.1029/2019MS001958
[12]  Sima, R.J. (2020) Combining AI and Analog Forecasting to Predict Extreme Weather. Eos, 101.
https://doi.org/10.1029/2020EO140896
[13]  Kalnay, E., et al. (1996) The NCEP/NCAR Reanalysis 40-Year Project. Bulletin of the American Meteorological Society, 77, 437-471.
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[14]  Kistler, R., et al. (2001) The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bulletin of the American Meteorological Society, 82, 247-267.
https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
[15]  Walsh, J.E. and Brettschneider, B. (2019) Attribution of Recent Warming in Alaska. Polar Science, 21, 101-109.
https://doi.org/10.1016/j.polar.2018.09.002
[16]  Tippett, M.K. and DelSole, T. (2013) Constructed Analogs and Linear Regression. Monthly Weather Review, 141, 2519-2525.
https://doi.org/10.1175/MWR-D-12-00223.1
[17]  Shukla, S., Funk, C. and Hoell, A. (2014) Using Constructed Analogs to Improve Skill of National Multi-Model Ensemble March-April-May Precipitation Forecasts in Equatorial East Africa. Environmental Research Letters, 9, Article ID: 094009.
https://doi.org/10.1088/1748-9326/9/9/094009
[18]  Frediani, M.E., Hopson, T.M., Hacker, J.P., Anagnostou, E.N., Monache, L.D. and Vandenberghe, F. (2017) Object-Based Analog Forecasts for Surface Wind Speed. Monthly Weather Review, 145, 5083-5102.
https://doi.org/10.1175/MWR-D-17-0012.1
[19]  Van den Dool, H. (1994) Searching for Analogues, How Long Must We Wait? Tellus, 46, 314-324.
https://doi.org/10.1034/j.1600-0870.1994.t01-2-00006.x
[20]  NOAA (2020) Arctic Report Card: Update for 2020. Arctic Program, National Oceanic and Atmospheric Administration.
https://arctic.noaa.gov/Report-Card/Report-Card-2020
[21]  Becker, E., Kirtman, B.P. and Pegion, K. (2020) Evolution of the North American Multi-Model Ensemble. Geophysical Research Letters, 47, e2020GL087408.
https://doi.org/10.1029/2020GL087408
[22]  Saha, S., et al. (2014) The NCEP Climate Forecast System Version 2. Journal of Climate, 27, 2185-2208.
https://doi.org/10.1175/JCLI-D-12-00823.1
[23]  Przybylak, R. (2020) Temporal and Spatial Variation of Surface Air Temperature over the Period of Instrumental Observations in the Arctic. International Journal of Climatology, 20, 587-614.
https://doi.org/10.1002/(SICI)1097-0088(200005)20:6<587::AID-JOC480>3.0.CO;2-H

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133