全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigating Neural Representation of Finger-Movement Directions Using Electroencephalography Independent Components

DOI: 10.4236/jbise.2021.146021, PP. 240-265

Keywords: Electroencephalography, Independent Component Analysis, Finger Movement Decoding Brain-Computer Interface, Occipital Lobe

Full-Text   Cite this paper   Add to My Lib

Abstract:

There are few EEG studies on finger movement directions because ocular artifacts also convey directional information, which makes it hard to separate the contribution of EEG from that of the ocular artifacts. To overcome this issue, we designed an experiment in which EEG’s temporal dynamics and spatial information are evaluated together to improve the performance of brain-computer interface (BCI) for classifying finger movement directions. Six volunteers participated in the study. We examined their EEG using decoding analyses. Independent components (ICs) that represented brain-source signals successfully classified the directions of the finger movements with higher rates than chance level. The weight analyses of the classifiers revealed that maximal performance of the classification was recorded at the latencies prior to the onset of finger movements. The weight analyses also revealed the relevant cortical areas including the right lingual, left posterior cingulate, left inferior temporal gyrus, and right precuneus, which indicated the involvement of the visuospatial processing. We concluded that combining spatial distribution and temporal dynamics of the scalp EEG may improve BCI performance.

References

[1]  Balasubramanian, S., Garcia-cossio, E., Birbaumer, N., Burdet, E. and Ramos-murguialday, A. (2018) Is EMG a Viable Alternative to BCI for Detecting Movement Intention in Severe Stroke? IEEE Transactions on Biomedical Engineering, 65, 2790-2797.
https://doi.org/10.1109/TBME.2018.2817688
[2]  Shain, W., et al. (2003) Controlling Cellular Reactive Responses around Neural Prosthetic Devices Using Peripheral and Local Intervention Strategies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11, 186-188.
https://doi.org/10.1109/TNSRE.2003.814800
[3]  Gruenwald, J., Znobishchev, A., Kapeller, C., Kamada, K., Scharinger, J. and Guger, C. (2019) Time-Variant Linear Discriminant Analysis Improves Hand Gesture and Finger Movement Decoding for Invasive Brain-Computer Interfaces. Frontiers in Neuroscience, 13, 901.
https://doi.org/10.3389/fnins.2019.00901
[4]  Salari, E., Freudenburg, Z.V., Branco, M.P., Aarnoutse, E.J., Vansteensel, M.J. and Ramsey, N.F. (2019) Classification of Articulator Movements and Movement Direction from Sensorimotor Cortex Activity. Scientific Reports, 9, Article No. 14165.
https://doi.org/10.1038/s41598-019-50834-5
[5]  Pan, G., et al. (2018) Rapid Decoding of Hand Gestures in Electrocorticography Using Recurrent Neural Networks. Frontiers in Neuroscience, 12, 555.
https://doi.org/10.3389/fnins.2018.00555
[6]  Berlot, E., Prichard, G., O’Reilly, J., Ejaz, N. and Diedrichsen, J. (2019) Ipsilateral Finger Representations in the Sensorimotor Cortex Are Driven by Active Movement Processes, Not Passive Sensory Input. Journal of Neurophysiology, 121, 418-426.
https://doi.org/10.1152/jn.00439.2018
[7]  McFarland, D.J., Sarnacki, W.A. and Wolpaw, J.R. (2010) Electroencephalographic (EEG) Control of Three-Dimensional Movement. Journal of Neural Engineering, 7, Article ID: 036007.
https://doi.org/10.1088/1741-2560/7/3/036007
[8]  Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E. and Sejnowski, T.J. (2000) Removal of Eye Activity Artifacts from Visual Event-Related Potentials in Normal and Clinical Subjects. Clinical Neurophysiology, 111, 1745-1758.
https://doi.org/10.1016/S1388-2457(00)00386-2
[9]  Nauhaus, I., Benucci, A., Carandini, M. and Ringach, D.L. (2008) Neuronal Selectivity and Local Map Structure in Visual Cortex. Neuron, 57, 673-679.
https://doi.org/10.1016/j.neuron.2008.01.020
[10]  Nakata, H., Domoto, R., Mizuguchi, N., Sakamoto, K. and Kanosue, K. (2019) Negative BOLD Responses during Hand and Foot Movements: An fMRI Study. PLoS ONE, 14, e0215736.
https://doi.org/10.1371/journal.pone.0215736
[11]  Asemi, A., Ramaseshan, K., Burgess, A., Diwadkar, V.A. and Bressler, S.L. (2015) Dorsal Anterior Cingulate Cortex Modulates Supplementary Motor Area in Coordinated Unimanual Motor Behavior. Frontiers in Human Neuroscience, 9, 309.
https://doi.org/10.3389/fnhum.2015.00309
[12]  Astafiev, S.V., Stanley, C.M., Shulman, G.L. and Corbetta, M. (2004) Extrastriate Body Area in Human Occipital Cortex Responds to the Performance of Motor Actions. Nature Neuroscience, 7, 542-548.
https://doi.org/10.1038/nn1241
[13]  Jung, T.P., et al. (2000) Removing Electroencephalographic Artifacts by Blind Source Separation. Psychophysiology, 37, 163-178.
https://doi.org/10.1111/1469-8986.3720163
[14]  Tanaka, H., Miyakoshi, M. and Makeig, S. (2018) Dynamics of Directional Tuning and Reference Frames in Humans: A High-Density EEG Study. Scientific Reports, 8, Article No. 8205.
https://doi.org/10.1038/s41598-018-26609-9
[15]  Wang, Y. and Makeig, S. (2009) Predicting Intended Movement Direction Using EEG from Human Posterior Parietal Cortex. International Conference on Foundations of Augmented Cognition, San Diego, 19-24 July 2009, 437-446.
https://doi.org/10.1007/978-3-642-02812-0_52
[16]  Delorme, A., Palmer, J., Onton, J., Oostenveld, R. and Makeig, S. (2012) Independent EEG Sources Are Dipolar. PLoS ONE, 7, e30135.
https://doi.org/10.1371/journal.pone.0030135
[17]  Jawad Khan, M., Hong, M.J. and Hong, K.S. (2014) Decoding of Four Movement Directions Using Hybrid NIRS-EEG Brain-Computer Interface. Frontiers in Human Neuroscience, 8, Article 244.
https://doi.org/10.3389/fnhum.2014.00244
[18]  Kakei, S., Hoffman, D.S. and Strick, P.L. (2003) Sensorimotor Transformations in Cortical Motor Areas. Neuroscience Research, 46, 1-10.
https://doi.org/10.1016/S0168-0102(03)00031-2
[19]  Yoshimura, N., Tsuda, H., Kawase, T., Kambara, H. and Koike, Y. (2017) Decoding Finger Movement in Humans Using Synergy of EEG Cortical Current Signals. Scientific Reports, 7, Article No. 11382.
https://doi.org/10.1038/s41598-017-09770-5
[20]  Palmer, J., Kreutz-Delgado, K. and Makeig, S. (2011) AMICA: An Adaptive Mixture of Independent Component Analyzers with Shared Components. Tech. Report, Swartz Center for Computational Neuroscience, San Diego, 1-15.
http://dsp.ucsd.edu/~kreutz/Publications/palmer2011AMICA.pdf
[21]  Onton, J. and Makeig, S. (2006) Information-Based Modeling of Event-Related Brain Dynamics. Progress in Brain Research, 159, 99-120.
https://doi.org/10.1016/S0079-6123(06)59007-7
[22]  Pion-Tonachini, L., Kreutz-Delgado, K. and Makeig, S. (2019) ICLabel: An Automated Electroencephalographic Independent Component Classifier, Dataset, and Website. Neuroimage, 198, 181-197.
https://doi.org/10.1016/j.neuroimage.2019.05.026
[23]  Winkler, I., Haufe, S. and Tangermann, M. (2011) Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals. Behavioral and Brain Functions, 7, 30.
https://doi.org/10.1186/1744-9081-7-30
[24]  Miyakoshi, M., Kanayama, N., Iidaka, T. and Ohira, H. (2010) EEG Evidence of Face-Specific Visual Self-Representation. Neuroimage, 50, 1666-1675.
https://doi.org/10.1016/j.neuroimage.2010.01.030
[25]  Yamashita, O., Sato, M., Yoshioka, T., Tong, F. and Kamitani, Y. (2008) Sparse Estimation Automatically Selects Voxels Relevant for the Decoding of fMRI Activity Patterns. Neuroimage, 42, 1414-1429.
https://doi.org/10.1016/j.neuroimage.2008.05.050
[26]  Sivagnanam, S., et al. (2013) Introducing the Neuroscience Gateway. CEUR Workshop Proceedings, Zurich, Switzerland, 3-5 June 2013, 993.
http://ceur-ws.org/Vol-993/paper10.pdf.
[27]  Yoshimura, N., et al. (2014) Dissociable Neural Representations of Wrist Motor Coordinate Frames in Human Motor Cortices. Neuroimage, 97, 53-61.
https://doi.org/10.1016/j.neuroimage.2014.04.046
[28]  Rolls, E.T., Huang, C.C., Lin, C.P., Feng, J. and Joliot, M. (2020) Automated Anatomical Labelling Atlas 3. Neuroimage, 206, Article ID: 116189.
https://doi.org/10.1016/j.neuroimage.2019.116189
[29]  Mennes, M., Wouters, H., Vanrumste, B., Lagae, L. and Stiers, P. (2010) Validation of ICA as a Tool to Remove Eye Movement Artifacts from EEG/ERP. Psychophysiology, 47, 1142-1150.
https://doi.org/10.1111/j.1469-8986.2010.01015.x
[30]  Waberski, T.D., Gobbelé, R., Lamberty, K., Buchner, H., Marshall, J.C. and Fink, G.R. (2008) Timing of Visuo-Spatial Information Processing: Electrical Source Imaging Related to Line Bisection Judgements. Neuropsychologia, 46, 1201-1210.
https://doi.org/10.1016/j.neuropsychologia.2007.10.024
[31]  Fortin, A., Ptito, A., Faubert, J. and Ptito, M. (2002) Cortical Areas Mediating Stereopsis in the Human Brain: A PET Study. Neuroreport, 13, 895-898.
https://doi.org/10.1097/00001756-200205070-00032
[32]  Mechelh, A., Humphreys, G.W., Mayall, K., Olson, A. and Price, C.J. (2000) Differential Effects of Word Length and Visual Contrast in the Fusiform and Lingual Gyri during Reading. Proceedings of the Royal Society B: Biological Sciences, 267, 1909-1913.
https://doi.org/10.1098/rspb.2000.1229
[33]  Shetht, B.R. and Young, R. (2016) Two Visual Pathways in Primates Based on Sampling of Space: Exploitation and Exploration of Visual Information. Frontiers in Integrative Neuroscience, 10, 37.
https://doi.org/10.3389/fnint.2016.00037
[34]  Stark, A. and Zohary, E. (2008) Parietal Mapping of Visuomotor Transformations during Human Tool Grasping. Cerebral Cortex, 18, 2358-2368.
https://doi.org/10.1093/cercor/bhm260
[35]  Wenderoth, N., Debaere, F., Sunaert, S. and Swinnen, S.P. (2005) The Role of Anterior Cingulate Cortex and Precuneus in the Coordination of Motor Behaviour. European Journal of Neuroscience, 22, 235-246.
https://doi.org/10.1111/j.1460-9568.2005.04176.x
[36]  Schubert, T., von Cramon, D.Y., Niendorf, T., Pollmann, S. and Bublak, P. (1998) Cortical Areas and the Control of Self-Determined Finger Movements: An fMRI Study. Neuroreport, 9, 3171-3176.
https://doi.org/10.1097/00001756-199810050-00009
[37]  Bubb, E.J., Metzler-Baddeley, C. and Aggleton, J.P. (2018) The Cingulum Bundle: Anatomy, Function, and Dysfunction. Neuroscience & Biobehavioral Reviews, 92, 104-127.
https://doi.org/10.1016/j.neubiorev.2018.05.008
[38]  Sturm, W., et al. (2006) Spatial Attention: More than Intrinsic Alerting? Experimental Brain Research, 171, 16-25.
https://doi.org/10.1007/s00221-005-0253-1
[39]  Weilke, F., et al. (2001) Time-Resolved fMRI of Activation Patterns in M1 and SMA during Complex Voluntary Movement. Journal of Neurophysiology, 85, 1858-1863.
https://doi.org/10.1152/jn.2001.85.5.1858
[40]  Nguyen, V.T., Breakspear, M. and Cunnington, R. (2014) Reciprocal Interactions of the SMA and Cingulate Cortex Sustain Premovement Activity for Voluntary Actions. Journal of Neuroscience, 34, 16397-16407.
https://doi.org/10.1523/JNEUROSCI.2571-14.2014
[41]  Carey, L.M., Abbott, D.F., Egan, G.F. and Donnan, G.A. (2008) Reproducible Activation in BA2, 1 and 3b Associated with Texture Discrimination in Healthy Volunteers over Time. Neuroimage, 39, 40-51.
https://doi.org/10.1016/j.neuroimage.2007.08.026
[42]  Toxopeus, C.M., de Jong, B.M., Valsan, G., Conway, B.A., Leenders, K.L. and Maurits, N.M. (2011) Direction of Movement Is Encoded in the Human Primary Motor Cortex. PLoS ONE, 6, e27838.
https://doi.org/10.1371/journal.pone.0027838
[43]  Kakei, S., Hoffman, D.S. and Strick, P.L. (1999) Muscle and Movement Representations in the Primary Motor Cortex. Science, 285, 2136-2139.
https://doi.org/10.1126/science.285.5436.2136
[44]  Cheney, P.D., Fetz, E.E. and Palmer, S.S. (1985) Patterns of Facilitation and Suppression of Antagonist Forelimb Muscles from Motor Cortex Sites in the Awake Monkey. Journal of Neurophysiology, 53, 805-820.
https://doi.org/10.1152/jn.1985.53.3.805
[45]  Vermetten, E., Charney, D.S. and Bremner, J.D. (2002) Anxiety. In: Encyclopedia of the Human Brain, Vol. 1, Elsevier, Amsterdam, 159-180.
https://doi.org/10.1016/B0-12-227210-2/00028-5
[46]  Nunez, P.L. and Srinivasan, R. (2009) Electric Fields of the Brain: The Neurophysics of EEG.
https://www.doi.org/10.1093/acprof:oso/9780195050387.001.0001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133