|
新型微小RNA-9对乳腺癌增殖的影响及靶基因预测的生信分析
|
Abstract:
目的:通过对乳腺癌组织测序发现novel-miR-9在癌组织中呈现低表达。深入研究novel-miR-9对乳腺癌的调控机制及其生物学功能理论机制。方法:运用cck-8以及EdU实验检测novel-miR-9对人乳腺癌细胞增殖的影响;应用生物信息学分析预测novel-miR-9靶基因以及与乳腺癌相关基因;用Venny2.1.0绘制韦恩图得到靶基因集合;对靶基因集合进行GO功能注释分析,找出与细胞增殖相关基因;分析其基因在乳腺癌表达量;并对其进行蛋白交互作用,GO功能注释分析和KEGG Pathway分析。结果:novel-miR-9在人乳腺癌细胞呈低表达(P < 0.001);抑制乳腺癌细胞增殖能力(P < 0.001);通过Venny图以及GO功能注释分析和蛋白交互作用分析找出与细胞增殖相关的26个基因并发现其相互作用关系较复杂;GO分析发现靶基因可能参与细胞增殖、信号接收等生物过程;KEGG Pathway分析发现其靶基因主要富集在PI3K-Akt、Ras、癌症、癌症中的microRNA等信号通路。结论:novel-miR-9调控参与多种重要的生物学过程,为后续研究提供了线索。
Objective: to study the low expression of novel-miR-9 in breast cancer by sequencing. For the further study of novel-miR-9 regulation mechanism of breast cancer and its biological function theory mechanism. Methods: cck-8 and EdU experiments were used to detect the effect of novel-miR-9 on human breast cancer cell proliferation; application of bioinformatics analysis to predict novel-miR-9 target genes and breast cancer related genes; a set of target genes was obtained by drawing Wayne map with Venny2.1.0; GO functional annotation analysis of target gene sets, Identification of genes related to cell proliferation; to analyze the expression of its gene in breast cancer; and protein interaction, GO function annotation analysis and KEGG Pathway analysis. Results: novel-miR-9 low expression in human breast cancer cells (P < 0.001); inhibition of breast cancer cell proliferation (P < 0.001); through Venny map and GO function annotation analysis and protein interaction analysis to identify 26 genes related to cell proliferation and found that the interaction relationship is more complex; GO analysis found that target genes may be involved in cell proliferation, signal reception and other biological processes; KEGG Pathway analysis found that its target genes are most enriched in PI3K-Akt, Ras, cancer, cancer microRNA and other signaling pathways. Conclusions: novel-miR-9 regulation is involved in many important biological processes, provided clues for the follow-up study.
[1] | Guo, F., Kuo, Y.F., Shih, Y.C.T., et al. (2018) Trends in Breast Cancer Mortality by Stage at Diagnosis among Young Women in the United States. Cancer, 124, 3500-3509. https://doi.org/10.1002/cncr.31638 |
[2] | Zhang, Q., Sun, H., Jiang, Y., et al. (2013) MicroRNA-181 a Suppresses Mouse Granulosa Cell Proliferation by Targeting Activin Receptor IIA. PLoS One, 8, e59667. https://doi.org/10.1371/journal.pone.0059667 |
[3] | Zhang, J., Luo, N., Luo, Y., et al. (2012) MicroRNA-150inhibitshumancdl33-Positive Liver Cancer Stem Cells through Negative Regulation of the Transcription Factor c-Myb. Journal of Oncology, 40, 747-756.
https://doi.org/10.3892/ijo.2011.1242 |
[4] | Leblanc, N., Harquail, J., Crapoulet, N., et al. (2018) Pax-5 Inhibits Breast Cancer Proliferation through miR-215 Up-Regulation. Anticancer Research, 38, 5013-5026. https://doi.org/10.21873/anticanres.12820 |
[5] | Li, L., Jia, L. and Ding, Y. (2018) Upregulation of miR-375 Inhibits Human Liver Cancer Cell Growth by Modulating Cell Proliferation and Apoptosis via Targeting ErbB2. Oncology Letters, 16, 3319-3326.
https://doi.org/10.3892/ol.2018.9011 |
[6] | Yang, H., Zhang, H., Ge, S., et al. (2018) Exosome-Derived miR-130a Activates Angiogenesis in Gastric Cancer by Targeting C-MYB in Vascular Endothelial Cells. Molecular Therapy, 26, 2466-2475.
https://doi.org/10.1016/j.ymthe.2018.07.023 |
[7] | Cheng, S., Guo, M.Z. and Wu, X.J. (2018) Research and Development of MicroRNA Target Gene Prediction Algorithm. Intelligent Computer and Applications, 8, 1-5+13. |
[8] | Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M. and Haussler, D. (2002) The Human Genome Browser at UCSC. Genome Research, 12, 996-1006. https://doi.org/10.1101/gr.229102 |
[9] | Huang, D.W., Sherman, B.T., Tan, Q., Collins, J.R., Alvord, W.G., Roayaei, J., Stephens, R., Baseler, M.W., Lane, H.C. and Lempicki, R.A. (2007) The DAVID Gene Functional Classification Tool: A Novel Biological Module-Centric Algorithm to Functionally Analyze Large Gene Lists. Genome Biology, 8, Article No. R183.
https://doi.org/10.1186/gb-2007-8-9-r183 |
[10] | Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., von Mering, C., et al. (2013) String v9.1: Protein-Protein Interaction Networks, with Increased Coverage and Integration. Nucleic Acids Research, 41, D808-D815. https://doi.org/10.1093/nar/gks1094 |
[11] | Kasinski, A.L. and Slack, F.J. (2011) MicroRNAs en Route to the Clinic:Progress in Validating and Targeting MicroRNAs for Cancer Therapy. Nature Reviews Cancer, 11, 849-864.
https://doi.org/10.1038/nrc3166 |
[12] | Bartonicek, N., Maag, J.L. and Dinger, M.E. (2016) Long Noncoding RNAs in Cancer: Mechanisms of Action and Technological Advancements. Molecular Cancer, 15, Article No. 43. https://doi.org/10.1186/s12943-016-0530-6 |
[13] | Han, C., Seebacher, N.A., Hornicek, F.J., et al. (2017) Regulation of MicroRNAs Function by Circular RNAs in Human Cancer. Oncotarget, 8, 64622-64637. https://doi.org/10.18632/oncotarget.19930 |
[14] | Zheng, L., Tu, Q., Meng, S., et al. (2017) Runx2/DICER/miRNA Pathway in Regulating Osteogenesis. Journal of Cellular Physiology, 232, 182-191. https://doi.org/10.1002/jcp.25406 |
[15] | Simonson, B. and Das, S. (2015) MicroRNA Therapeutics: The Next Magic Bullet. Mini-Reviews in Medicinal Chemistry, 15, 467-474. https://doi.org/10.2174/1389557515666150324123208 |
[16] | Sharma, G. and Agarwal, S.M. (2014) Identification of Critical MicroRNA Gene Targets in Cervical Cancer Using Network Properties. MicroRNA, 3, 37-44. https://doi.org/10.2174/2211536603666140417214659 |