全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于加权Schatten-1/2范数的低秩矩阵近似算法
Weighted Schatten-1/2 Norm Minimization for Low-Rank Matrix Approximation

DOI: 10.12677/PM.2021.116114, PP. 998-1009

Keywords: 加权Schatten-1/2拟范数,低秩矩阵近似,不动点迭代算法,约化奇异值分解,非凸正则化
The Weighted Schatten-1/2 Norm
, Low-Rank Matrix Approximation, Fixed Point Iterative Algorithm, Reduced Singular Value Decomposition, Non-Convex Regularization

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出加权的Schatten-1/2拟范数求解低秩矩阵近似问题,该模型以加权的Schatten-1/2拟范数为目标函数,观测矩阵为约束。通过基于阈值的加权不动点迭代算法求解。该方法通过分配不同权值体现奇异值的重要性可更好地近似原来的低秩假设。另一方面,针对奇异值计算量大的问题引入约化奇异值分解。数值实验结果表明,该方法具有较快的收敛速度。
In this paper, the low-rank matrix approximation problem is discussed with a weighted Schatten quasi-norm as the objective function, constrained by partial obtained data. The weights are in-troduced to measure the importance of different rank components. A weighted fixed point iterative thresholding algorithm is proposed based on the fixed point representation theory. The con-vergence analysis of the algorithm is provided. Numerical examples illustrate the effciency of our method.

References

[1]  Li, W., Zhao, L. and Lin, Z. (2015) Non-Local Image Inpainting Using Low-Rank Matrix Completion. Computer Graphics Forum, 34, 111-122.
https://doi.org/10.1111/cgf.12521
[2]  Candes, E.J. and Recht, B. (2009) Exact Matrix Completion via Convex Optimization. Foundations of Computational Mathematics, 9, 717-772.
https://doi.org/10.1007/s10208-009-9045-5
[3]  Gogna, A. and Majumdar, A. (2015) Matrix Completion Incor-porating Auxiliary Information for Recommender System Design. Expert Systems with Applications, 42, 5789-5799.
https://doi.org/10.1016/j.eswa.2015.04.012
[4]  Candes, E.J. and Emmanuel, J. (2010) The Power of Convex Relaxation: Near-Optimal Matrix Completion. IEEE Transactions on Information Theory, 56, 2053-2080.
https://doi.org/10.1109/TIT.2010.2044061
[5]  Candes, E.J. and Recht, B. (2009) Exact Matrix Completion via Convex Optimization. Foundations of Computational Mathematics, 9, 717-772.
https://doi.org/10.1007/s10208-009-9045-5
[6]  Recht, B., Fazel, M. and Parrilo, P.A. (2010) Guaranteed Mini-mum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. SIAM Review, 52, 471-501.
https://doi.org/10.1137/070697835
[7]  Hu, Y., Zhang, D. and Ye, J. (2013) Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 2117-2130.
https://doi.org/10.1109/TPAMI.2012.271
[8]  Zhang, D., Hu, Y. and Ye, J. (2013) Matrix Completion by Trun-cated Nuclear Norm Regularization. IEEE Conference on Computer Vision and Pattern Recognition, Vol. 35, 2192-2199.
[9]  Candes, E.J. and Plan, Y. (2010) Matrix Completion with Noise. Proceedings of the IEEE, 98, 925-936.
https://doi.org/10.1109/JPROC.2009.2035722
[10]  Koltchinskii, V., Lounici, K. and Tsybakov, A.B. (2011) Nu-clear-Norm Penalization and Optimal Rates for Noisy Low-Rank Matrix Completion. The Annals of Statistics, 39, 2302-2329.
https://doi.org/10.1214/11-AOS894
[11]  Xu, Z., Chang, X., Xu, F. and Zhang, H. (2012) Regu-larization: A Thresholding Representation Theory and a Fast Solver. IEEE Transactions on Neural Networks and Learning Systems, 23, 1013-1027.
https://doi.org/10.1109/TNNLS.2012.2197412
[12]  Gu, S., Zhang, L. and Zuo, W. (2014) Weighted Nuclear Norm Minimization with Application to Image Denoising. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1, 2862-2869.
https://doi.org/10.1109/CVPR.2014.366
[13]  Oliveira, J.P., Bioucas-Dias, J.M. and Figueiredo, M.A.T. (2009) Adaptive Total Variation Image Deblurring: A Majorization Minimization Approach. Signal Processing, 89, 1683-1693.
https://doi.org/10.1016/j.sigpro.2009.03.018
[14]  Lu, Z., Zhang, Y. and Liu, X. (2015) Penalty Decomposition Methods for Rank Minimization. Optimization Methods and Software, 30, 531-558.
https://doi.org/10.1080/10556788.2014.936438
[15]  Lai, M., Xu, Y. and Yin, W. (2013) Improved Iteratively Reweighted Least Squares for Unconstrained Smoothed Minimization. SIAM Journal on Numerical Analysis, 51, 927-957.
https://doi.org/10.1137/110840364
[16]  Mohan, K. and Fazel, M. (2012) Iterative Reweighted Algo-rithms for Matrix Rank Minimization. Journal of Machine Learning Research, 13, 3441-3473.
[17]  Rao, G., Peng, Y. and Xu, Z. (2013) Robust Sparse and Low-Rank Matrix Decomposition Based on the Modeling. Science Chi-na-Information Sciences, 43, 733-748.
[18]  Xu, Z.B., Guo, H., Wang, Y. and Zhang, H. (2012) The Representation of Regularizer among Regularizer: An Experimental Study Based on Phase Diagram. Acta Automatica Sinica, 38, 1225-1228.
https://doi.org/10.3724/SP.J.1004.2012.01225
[19]  Peng, D., Xiu, N. and Yu, J. (2017) Regularization Methods and Fixed Point Algorithms for Affine Rank Minimization Problems. Computational Optimization and Ap-plications, 67, 543-569.
https://doi.org/10.1007/s10589-017-9898-5
[20]  Mirsky, L. (1975) A Trace Inequality of John von Neumann. Monatshefte für Mathematik, 79, 303-306.
https://doi.org/10.1007/BF01647331
[21]  Xie, Y., Gu, S. and Liu, Y. (2016) Weighted Schatten p-Norm Mini-mization for Image Denoising and Background Subtraction. IEEE Transactions on Image Processing, 25, 4842-4857.
https://doi.org/10.1109/TIP.2016.2599290
[22]  Ma, S., Goldfarb, D. and Chen, L. (2011) Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization. Mathematical Programming, 128, 321-353.
https://doi.org/10.1007/s10107-009-0306-5
[23]  Drineas, P., Kannan, R. and Mahoney, M.W. (2006) Fast Monte Carlo Algorithms for Matrices q: Computing Low-Rank Approximations to a Matrix. SIAM Journal on Computing, 36, 158-183.
https://doi.org/10.1137/S0097539704442696
[24]  Jain, P., Meka, R. and Dhillon, I. (2010) Guaranteed Rank Minimization via Singular Value Projection. Proceedings of the Advances in Neural Information Processing Systems, Vol. 1, 937-945.
[25]  Cai, J.F., Candes, E.J. and Shen, Z.W. (2010) A Singular Value Thresholding Algo-rithm for Matrix Completion. SIAM Journal on Optimization, 20, 1956-1982.
https://doi.org/10.1137/080738970
[26]  Xu, C., Lin, Z.C. and Zha, H.B. (2017) A Unified Convex Surrogate for the Schatten-p Norm. Proceedings of the Thirty- First AAAI Conference on Artificial Intelligence, Vol. 25, 926-932.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133