全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2021 

海洋污损生物在钢材料腐蚀过程中的作用研究
Study on the Role of Marine Fouling Organisms in the Corrosion Process of Steel Materials

DOI: 10.12677/BP.2021.112002, PP. 9-18

Keywords: 钢材料,腐蚀,附着藻类,微生物,微囊藻
Steel Material
, Corrosion, Attached Algae, Micro-organism, Microcystis

Full-Text   Cite this paper   Add to My Lib

Abstract:

以浸泡在海水中的钢材料为研究对象,研究钢板发生腐蚀过程中附着生物过程的变化,在实验周期内,理化指标、附着藻类、附着浮游动物和附着微生物进行了监测。实验结果表明:1) 海水对钢材料表面确实存在腐蚀现象,腐蚀区域集中在声程值4~12 mm之间。2) 早期的生物附着是随机的,运动能力强的附着机会更大。3) 有着良好固着能力的藻类和原生动物随后附着并成为优势。4) 浸泡1个月后,材料表面附着微生物OTU数为377到577,拟杆菌门和α-变形菌占比最高。发现加速腐蚀的细菌3种,与修复过程有关的细菌4种。本研究表明,多种生物参与了钢材料的腐蚀过程、生物的运动能力和固着能力是腐蚀过程中不容忽视的要素。
Objectives: Taking steel immersed in seawater as the research object, the change of biological process during the corrosion process of steel plate was studied. Methods: During the experimental period, the physical and chemical indexes, attached algae, attached zooplankton and attached microorganisms were monitored. Results: The experimental results show that: 1) There is corrosion on the steel surface by seawater, and the corrosion area is concentrated in the range of 4~12 mm. 2) The early biological attachment is random, and the attachment with strong movement ability is more likely. 3) Algae and protozoa with good fixation ability subsequently attached and became dominant. 4) After soaking for 1 month, the number of OTU on the surface of the materials ranged from 377 to 577, with
Bacteroides and α-Proteus accounting for the highest proportion. It was found that 3 kinds of bacteria accelerated corrosion and 4 kinds of bacteria related to the repair process. Conclusions: This study shows that a variety of organisms participate in the corrosion process of steel materials, and the movement ability and fixation ability of organisms are important factors in the corrosion process.

References

[1]  马春风, 吴博. 海洋防污高分子材料的进展[J]. 高分子通报, 2013(9): 87-95
[2]  刘姗姗, 严涛. 海洋污损生物防除的现状及展望[J]. 海洋学研究, 2006, 24(4): 53-60
[3]  严涛, 严文侠. 海南岛东部海域生物污损研究[J]. 海洋与湖沼, 1998, 29(4): 374-380
[4]  国家环境保护局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002.
[5]  赵文. 中国北方内陆盐水的浮游植物[J]. 大连水产学院学报, 1992, 7(z1): 49-64.
[6]  何志辉, 赵文. 三北地区内陆盐水生物资源及其渔业利用[J]. 大连水产学院学报, 2002,17(3):157-166.
[7]  史本泽. 不同生境中海洋线虫分类及小型底栖生物群落结构研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2016
[8]  Appeltans, W., Ahyong, S.T., Anderson, G., Angel, M.V., Artois, T., Bailly, N., et al. (2012) The Magnitude of Global Marine Species Diversity. Current Biology, 22, 2189-2202.
https://doi.org/10.1016/j.cub.2012.09.036
[9]  Schmidt-Rhaesa, A. (2014) Handbook of Zoology: Nematoda. Vol. 2, De Gruyter, Germany, 75.
[10]  陈永伟, 栾鑫, 段继周, 池振明. 青岛中港海水全浸初期不锈钢表面生物膜的细菌多样性分析[J]. 海洋与湖沼, 2014, 45(5): 1064-1070
[11]  Sikorski, J., Chertkov, O., Lapidus, A., Nolan, M., Lucas, S., Glavina Del Rio, T., et al. (2010) Complete Genome Sequence of Ilyobacter polytropus Type Strain (CuHbu1T). Standards in Genomic Sciences, 3, 304-314.
http://doi.org/10.4056/sigs.1273360
[12]  Brinkhoff, T., Sievert, S.M., Kuever, J. and Muyzer, G. (1999) Distribu-tion and Diversity of Sulfur-Oxidizing Thiomicrospira spp. at a Shallow-Water Hydrothermal Vent in the Aegean Sea (Milos, Greece). Applied and Environmental Microbiology, 65, 3843-3849.
https://doi.org/10.1128/AEM.65.9.3843-3849.1999
[13]  Park, S., Won, S.-M. and Yoon, J.-H. (2018) Dok-doniaponticola sp. nov., a Carrageenan-Degrading Bacterium of the Family Flavobacteriaceae Isolated from Seawater. Current Microbiology, 75, 1126-1132.
https://doi.org/10.1007/s00284-018-1496-y
[14]  Li, Y.L., Xu, L., Guan, Y., Guan, C., Lei, X., Zheng, W., et al. (2016) First Evidence of Altererythrobacter sp. LY02 with Indirect Algicidal Activity on the Toxic Dinoflagellate, Alex-andrium tamarense. Current Microbiology, 73, 550-560.
https://doi.org/10.1007/s00284-016-1093-x
[15]  张倩. 高盐条件BTEX降解菌群多样性、降解基因型及相容性溶质分析[D]: [硕士学位论文]. 上海: 华东理工大学, 2012
[16]  Vera-Villalobos, H., Pérez, V., Contreras, F., Alcayaga, V., Avalos, V., Riquelme, C., et al. (2020) Characterization and Removal of Biofouling from Reverse Osmosis Membranes (ROMs) from a Desalination Plant in Northern Chile, Using Alteromonas sp. Ni1-LEM Supernatant. Bio-fouling, 36, 505-515.
https://doi.org/10.1080/08927014.2020.1776268

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133