全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2型糖尿病患者冠脉病变程度与超氧化物歧化酶及心率变异性的关系
Relationship between Coronary Artery Lesion and Superoxide Dismutase and Heart Rate Variability in Patients with Type 2 Diabetes Mellitus

DOI: 10.12677/MD.2021.112013, PP. 79-89

Keywords: 2型糖尿病,冠心病,心率变异性,Gensini评分,超氧化物歧化酶
Type 2 Diabetes
, Coronary Heart Disease, Heart rate Variability, Gensini Score, Superoxide Dismutase

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨2型糖尿病合并冠心病患者冠脉病变程度与超氧化物歧化酶(SOD)及心率变异性(HRV)的关系。方法:回顾性分析我院住院行冠脉造影患者共219例,并根据冠脉造影结果、既往史及血糖情况分为冠心病合并糖尿病组(CHD + T2DM组)77例、冠心病组(CHD组)89例及正常对照组(CK组)53例。对入选对象的冠脉造影结果进行Gensini评分,测定糖化血红蛋白(HbA1c)、胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、空腹血糖(FBG)、SOD等生化指标,记录各组患者24 h动态心电图HRV指标,进行统计学分析。结果:CHD组和CHD + T2DM组年龄、男性比例、吸烟比例、合并高血压比例明显增加,LDL、Gensini评分明显升高,CHD + T2DM组Gensini评分更高;HDL、SOD及HRV明显降低,CHD + T2DM组更低。Gensini评分与FBG (R = 0.28)、HbA1c呈正相关(R = 0.15),与SOD (R = ?0.49)、SDNN (R = ?0.46)、SDANN (R = ?0.50)、RMSSD (R = ?0.34)、PNN50 (R = ?0.14)、LF (R = ?0.15)呈负相关;SOD与SDNN (R = 0.29)、SDANN (R = 0.25)、RMSSD (R = 0.17)、LF (R = 0.17)呈正相关,与FBG (R = ?0.23)、HbA1c (R = ?0.22)呈负相关。在CHD + T2DM组行多元线性回归研究构建线性方程Y = 154.27 ? 0.51(SOD) ? 0.46(SDNN) + 5.17(TG)。ROC曲线分析:SOD/SDNN、SOD/SDANN、SOD/PNN50均对诊断冠心病有意义,其中SOD/SDNN意义最大。结论:冠心病患者SOD及HRV均降低,2型糖尿病使其进一步加重,联合检测血清SOD值及HRV变化尤其是SDNN变化对冠心病的诊断以及2型糖尿病合并冠心病患者冠脉病变严重程度评估有重要意义。
Objective: To investigate the relationship between the severity of coronary artery disease and su-peroxide dismutase (SOD) and heart rate variability (HRV) in patients with type 2 diabetes mellitus complicated with coronary heart disease. Methods: A total of 219 patients who underwent coronary angiography in our hospital were retrospectively analyzed. According to the results of coronary angiography, past history and blood glucose, they are divided into CHD + T2DM group (77 cases), CHD group (89 cases) and normal control group (53 cases). Gensini score is used to evaluate the results of coronary angiography. Biochemical indexes such as glycosylated hemoglobin (HbA1c), cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), fasting blood glucose (FBG) and SOD are measured. 24 h Holter HRV indexes of patients in each group are recorded for statistical analysis. Results: In CHD and CHD + T2DM group, age, male proportion, smoking proportion and hypertension proportion are significantly increased, LDL and Gensini scores are significantly increased, Gensini score is higher in CHD + T2DM group, HDL, SOD and HRV are significantly decreased, and lower in CHD + T2DM group. Gensini score is positively correlated with FBG and HbA1c, and negatively correlated with SOD and HRV; SOD is positively correlated with HRV, and negatively correlated with FBG and HbA1c. In CHD + T2DM group, all factors and Gensini score are analyzed by multiple linear regression, and the multiple linear regression equation Y = 154.27 ? 0.51 (SOD) ? 0.46 (SDNN) + 5.17 (TG) was constructed. ROC curve analysis: SOD/SDNN, SOD/SDANN, SOD/pNN50 are of significance in the

References

[1]  Rachas, A., Raffaitin, C., Barberger-Gateau, P., et al. (2012) Clinical Usefulness of the Metabolic Syndrome for the Risk of Coronary Heart Disease Does Not Exceed the Sum of Its Individual Components in Older Men and Women. The Three-City (3C) Study. Heart, 98, 650-655.
https://doi.org/10.1136/heartjnl-2011-301185
[2]  Malin, Z., Kaveh, P., Olov, R., et al. (2018) Autonomic Neuropathy—A Prospective Cohort Study of Symptoms and E/I Ratio in Normal Glucose Tolerance, Impaired Glucose Tolerance, and Type 2 Diabetes. Frontiers in Neurology, 9, 154-160.
https://doi.org/10.3389/fneur.2018.00154
[3]  Akbar, M., Bhandari, U., Habib, A., et al. (2017) Potential Asso-ciation of Triglyceride Glucose Index with Cardiac Autonomic Neuropathy in Type 2 Diabetes Mellitus Patients. Journal of Korean Medical Science, 32, 1131-1138.
https://doi.org/10.3346/jkms.2017.32.7.1131
[4]  Soulere, L. and Bernard, J. (2009) Design, Solid Phase Synthe-sis and Evaluation of Cationic Ferrocenoyl Peptide Bioconjugates as Potential Antioxidant Enzyme Mimics. Bioorganic & Medicinal Chemistry Letters, 19, 1173-1176.
https://doi.org/10.1016/j.bmcl.2008.12.084
[5]  孟柳, 朱筠. 2型糖尿病周围神经病变与血清TAOC, MDA, SOD相关性研究[J]. 实用糖尿病杂志, 2011, 7(5): 18-19.
[6]  邹小兰, 王建榜. 心率变异性的临床应用进展[J]. 世界最新医学信息文摘(电子版), 2018, 18(9): 117-118, 121.
[7]  罗春苗, 高潮, 冯俊, 张静. 冠心病及合并糖尿病患者冠脉病变程度和同型半胱氨酸及心率变异性的相关性研究[J]. 安徽医药, 2016, 20(11): 2090-2093.
[8]  陈伟伟, 高润霖, 刘力生, 等. 《中国心血管病报告2017》概要[J]. 中国循环杂志, 2018, 33(1): 1-8.
[9]  Mershon, J.L., et al. (2002) Estrogen Increases iNOS Expression in the Ovine Coronary Artery. American Journal of Physiology: Heart & Circulatory Physiology, 283, 1169-1180.
https://doi.org/10.1152/ajpheart.00397.2000
[10]  Newton, K.M. (2004) Risk Factors for Coronary Heart Disease in Women. Nursing Clinics of North America, 39, 145-163.
https://doi.org/10.1016/j.cnur.2003.11.009
[11]  Hochner-Celnikier, D., Manor, O., Gotzman, O., et al. (2002) Gender Gap in Coronary Artery Disease: Comparison of the Extent, Severity and Risk Factors in Men and Women Aged 45-65 Years. Cardiology, 97, 18-23.
https://doi.org/10.1159/000047414
[12]  Lv, S., et al. (2018) Hyperuricemia and Smoking in Young Adults Sus-pected of Coronary Artery Disease ≤ 35 Years of Age: A Hospital-Based Observational Study. BMC Cardiovascular Disorders, 18, 178-187.
https://doi.org/10.1186/s12872-018-0910-5
[13]  Szwarcbard, N., Villani, M., Earnest, A., et al. (2020) The Asso-ciation of Smoking Status with Glycemic Control, Metabolic Profile and Diabetic Complications—Results of the Aus-tralian National Diabetes Audit (ANDA). Journal of Diabetes and Its Complications, 34, 116-126.
https://doi.org/10.1016/j.jdiacomp.2020.107626
[14]  Max-Paul, W., Franz, W., Hermann, B., et al. (2018) Lipid Profile and Long-Term Outcome in Premature Myocardial Infarction. European Journal of Clinical Investigation, 48, 130-138.
https://doi.org/10.1111/eci.13008
[15]  Singh, A., et al. (2018) Cardiovascular Risk and Statin Eligibility of Young Adults after an MI. Journal American College of Cardiology, 71, 292-302.
https://doi.org/10.1016/j.jacc.2017.11.007
[16]  Karemaker, J.M. (2017) An Introduction into Autonomic Nervous Function. Physiological Measurement, 38, 89-118.
https://doi.org/10.1088/1361-6579/aa6782
[17]  Ryder, J.R., O’Connell, M., Bosch, T.A., et al. (2016) Impaired Cardiac Autonomic Nervous System Function Is Associated with Pediatric Hypertension Independent of Adiposity. Pediatric Research, 79, 49-54.
https://doi.org/10.1038/pr.2015.188
[18]  刘丽娟, 杜煜, 黄伟, 等. 2型糖尿病患者血尿酸、胰岛素抵抗与心脏自主神经病变的相关性研究[J]. 中国医师杂志, 2016, 18(9): 1403-1405.
[19]  Martinez, P.F., et al. (2018) Heart Rate Variability in Coexisting Diabetes and Hypertension. Arquivosbrasileiros de Cardiologia, 111, 73-74.
https://doi.org/10.5935/abc.20180118
[20]  Yu, Y., Hu, L., Xu, Y., et al. (2019) Impact of Blood Glucose Control on Sympathetic and Vagus Nerve Functional Status in Patients with Type 2 Diabetes Mellitus. Acta Diabetologica, 57, 141-150.
https://doi.org/10.1007/s00592-019-01393-8
[21]  Horn, A., Parrilha, G.L., Melo, K.V., et al. (2010) An Iron-Based Cytosolic Catalase and Superoxide Dismutase Mimic Complex. Inorganic Chemistry, 49, 1274-1276.
https://doi.org/10.1021/ic901904b
[22]  朱秀敏. 超氧化物歧化酶的生理活性[J]. 当代医学, 2011, 17(15): 26-27.
[23]  Brownlee, M. (2001) Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature, 414, 813-820.
https://doi.org/10.1038/414813a

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133