|
Pure Mathematics 2021
二维线性传输方程满足两个守恒律的数值格式
|
Abstract:
[1] | Cui, Y. and Mao, D. (2012) Error Self-Canceling of a Difference Scheme Maintaining Two Conservation Laws for Linear Advection Equation. Mathematics of Computation, 81, 715-741.
https://doi.org/10.1090/S0025-5718-2011-02523-8 |
[2] | Cui, Y. and Mao, D. (2007) Numerical Method Satisfying the First Two Conservation Laws for the Korteweg-De Vries Equation. Journal of Computational Physics, 227, 376-399. https://doi.org/10.1016/j.jcp.2007.07.031 |
[3] | 崔艳芬. 线性传输方程和KdV方程的满足两个守恒律的差分格式[D]: [博士学位论文]. 上海: 上海大学, 2008. |
[4] | 李红霞. 一维守恒型方程(组)的熵耗散格式[D]: [博士学位论文]. 上海: 上海大学, 2005. |
[5] | 王志刚. 线性传输方程满足多个守恒律的差分格式[D]: [硕士学位论文]. 上海: 上海大学, 2005. |
[6] | 王志刚, 茅德康. 线性传输方程满足三个守恒律的差分格式[J]. 上海大学学报(自然科学版), 2006(6): 588-592. |
[7] | Le Veque, R.J. (2002) Finite Volume Methods for Hyperbolic Problems. Syndicate of the University of Cambridge Press, Cambridge. https://doi.org/10.1017/CBO9780511791253 |
[8] | 李立康, 於崇华, 朱政华. 微分方程数值解法[M]. 上海: 复旦大学出版社, 1999. |