全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Y3+掺杂ZrO2/Eu3+的合成及光催化性能研究
Synthesis and Photocatalytic Properties of Y3+ Doping ZrO2/Eu3+

DOI: 10.12677/MS.2021.115080, PP. 691-698

Keywords: 二氧化锆,掺杂,溶胶–凝胶,合成,光催化
ZrO2
, Doping, Sol-Gel, Synthesis, Photocatalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用溶胶–凝胶法制备得到了含有不同Y3+离子掺杂比例的ZrO2/Eu3+ (ZEO-Yx, x = 0, 2, 4,6, 8, 10)材料。随着Y3+离子掺杂比例升高(0%~10%),ZEO-Yx样品结构由初始的单斜结构,转变为单斜与立方相混合结构,最后转变为立方相结构。紫外光催化测试结果表明,ZEO-Yx对罗丹明B具有明显的光催化降解性能,其中单斜结构的ZEO-Y(0)与立方结构的ZEO-Y(10) (Y3+浓度分别为0%、10%)的催化效果最好。添加ZEO-Y(0)和ZEO-Y(10)催化剂的罗丹明B溶液一级动力学反应速率常数k分别为0.0229和0.0153,分别为未加催化剂的罗丹明B溶液的4.77倍和3.19倍。掺杂Y3+离子比例以及样品的结构共同影响ZEO-Yx对罗丹明B的催化光降解能力。
In this work, ZrO2 powders doped with variable concentration of Y3+ (ZEO-Yx, x = 0, 2, 4, 6, 8, 10) were prepared by sol-gel method. As the concentration of doped Y3+ increases, the ZEO-Yx powders undergo a phase transition in a sequence from the initial monoclinic structure to monoclinic and cubic mixed structure (ZEO-Y(2/4/6)) and finally to cubic structure (ZEO-Y(8/10)). The ZEO-Yx powders exhibit obvious photocatalytic degradation ability for rhodamine B solution. ZEO-Y(0) and ZEO-Y(10) have the best catalytic performance. First order kinetic reaction rate constant k of rhodamine B solution added with ZEO-Y(0) and ZEO-Y(10) catalysts are 0.0229 and 0.0153, respectively, which are 4.77 and 3.19 times that of rhodamine B solution without catalyst, respectively. The catalytic degradation ability of ZEO-Yx on rhodamine B solution is affected by the concentration of doped Y3+ ion as well as the structure of ZEO-Yx sample.

References

[1]  Yoon, S.J., Pi, J.W. and Park, K. (2018) Structural and Photoluminescence Properties of Solution Combustion-Processed Novel ZrO2 Doped with Eu3+ and Al3+. Dyes and Pigments, 150, 231-240.
https://doi.org/10.1016/j.dyepig.2017.12.012
[2]  Yu, H., Yu, Z., Zhao, S.M., Gu. L.J., Fan, X.Z., Zhu, L., Zou, B.L., Wang, Y. and Cao, X.Q. (2013) Fluorescence of Eu3+ as a Probe of Phase Transformation of Zirconia. Journal of Alloys and Compounds, 573, 177-181.
https://doi.org/10.1016/j.jallcom.2013.03.248
[3]  Lovisa, L.X., Araujo, V.D., Tranquilin, R.L., Longo, E., Li, M.S., Paskocimas, C.A., Bomio M.R.D. and Motta, F.V. (2016) White Photoluminescence Emission from ZrO2 Co-Doped with Eu3+, Tb3+ and Tm3+. Journal of Alloys and Compounds, 674, 245-251.
https://doi.org/10.1016/j.jallcom.2016.03.037
[4]  Yu, H., Zou, B.L., Liu, S.X., Zhao, S.M., Xu, J.Y., Zhao, Y., Fan, X.Z., Zhu, L., Wang, Y. and Cao, X.Q. (2015) Effects of Eu3+ Doping and Annealing on Structure and Fluores-cence of Zirconia Phosphors. Ceramics International, 41, 2760-2769.
https://doi.org/10.1016/j.ceramint.2014.10.091
[5]  Anandan, K., Rajesh, K., Gayathri, K., Shama, S.V., Hussain, S.G.M. and Rajendran, V. (2020) Effects of Rare Earth, Transition and Post Transition Metal Ions on Structural and Optical Properties and Photocatalytic Activities of Zirconia (ZrO2) Nanoparticles Synthesized Via the Facile Precipitation Process, Physica E: Low-Dimensional Systems & Nanostructures, 124, Article ID: 114342.
https://doi.org/10.1016/j.physe.2020.114342
[6]  Gionco, C., Hemandez, S., Castellino, M., Gadhi, T.A., Munoz-Tanares, J.A., Cerrato, E., Tagliaferro, A., Russo, N. and Paganini, M.C. (2019) Synthesis and Characterization of Ce and Er doped ZrO2 Nanoparticles as Solar Light Driven Photocatalysts. Journal of Alloys and Compounds, 775, 896-904.
https://doi.org/10.1016/j.jallcom.2018.10.046
[7]  毛东森, 卢冠忠, 陈庆龄. 钛锆复合氧化物的制备及催化性能的研究[J]. 工业催化, 2005, 13(4): 1-6.
[8]  席慧瑶, 所艳华, 汪颖军, 王时宇, 祖新月, 孙羽佳. 锆基复合氧化物的制备及其应用的研究进展[J]. 石油化工, 2015, 44(11): 1403-1408.
[9]  Zhang, H.W., Gao, B., Yu, S.M., Lai, L., Zeng, L., Sun, B., et al. (2009) Effects of Ionic Doping on the Behaviors of Oxygen Vacancies in HfO2 and ZrO2: A First Principles Study. 14th International Conference on Simulation of Semiconductor Processes and Devices 2009 Proceedings, San Diego, 9-11 September 2009, 1-4.
https://doi.org/10.1109/SISPAD.2009.5290225
[10]  Valter, K., Laurits, P., Hugo, M., Peeter, R., Mihkel, R., Ivita, B., Dzidra, J., Ilmo, S. and Raivo, J. (2018) Phase Stability and Oxygen-Sensitive Photoluminescence of ZrO2: Eu,Nb Nanopowders. Materials Chemistry and Physics, 214, 135-142.
https://doi.org/10.1016/j.matchemphys.2018.04.090
[11]  Corey, L.H. (2015) Processing of Transparent Rare Earth Doped Zirconia for High Temperature Light Emission Applications. University of California, Riverside.
[12]  Krisjanis, S., Larisa, G., Donats, M., Anatolijs, S., Agnieszka, O., Janusz, D.F. and Witld, L. (2010) Europium Doped Zirconia Luminescence. Optical Materials, 32, 827-831.
https://doi.org/10.1016/j.optmat.2010.03.002
[13]  Chandragiri, V.R., Neelakanta, R., Jaesool, S., Dongseob, K. and Kisoo, Y. (2018) Synthesis and Structural Optical Photocatalytic and Electrochemical Properties of Undoped and Yttrium-Doped Tetragonal ZrO2 Nanoparticles. Ceramics International, 44, 12329-12339.
https://doi.org/10.1016/j.ceramint.2018.04.020
[14]  周单. 稀土掺杂氧化锆纳米晶的制备及发光性能研究[D]: [硕士学位论文]. 南昌: 江西理工大学, 2014.
[15]  何思思. 纳米Ag/AgCl/ZnO复合材料的制备及其光催化性能的研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2020.
[16]  Siwińska-Ciesielczyk, K., ?wigoń, D., Rychtowski, P., Moszynski, D., Zgo?a-Grze?kowiak, A. and Jesionowski, T. (2020) The Performance of Multicomponent Oxide Systems Based on TiO2, ZrO2 and SiO2 in the photocatalytic Degradation of Rhodamine B: Mechanism and Kinetic Studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, Article ID: 124272.
https://doi.org/10.1016/j.colsurfa.2019.124272

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133