全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

随机森林储层预测及关键参数探讨——以SC某工区储层预测为例
Random Forest Reservoir Prediction and Key Parameters Discussion—Taking Reservoir Prediction of a Work Area in SC as an Example

DOI: 10.12677/AG.2021.115065, PP. 701-709

Keywords: 随机森林,决策树,关键参数,储层预测,重要性分析
Random Forest
, Decision Tree, Key Parameters, Reservoir Prediction, Importance Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

随机森林是一种高度灵活的机器学习算法,可以解决回归和分类的问题。本文建立随机森林地震储层预测流程,探讨了随机森林储层预测过程中的关键参数,并利用SC某工区储层伽马值预测为例,分别对比分析了不同参数对预测结果的影响,并给出最优参数设置。同时对参与建模的地震属性重要性进行分析,优化属性样本集。最后利用最佳随机森林模型,以优化属性样本集为输入开展储层预测,取得良好效果。实践证明,随机森林算法能够有效进行储层预测,随机森林模型的参数调优很重要,影响到算法的效率和最终预测精度。
Random forest is a highly flexible machine learning algorithm, which can solve the problems of regression and classification. According to the process of random forest seismic reservoir prediction, this paper discusses the key parameters in the process of random forest reservoir prediction. Taking the reservoir gamma prediction of a work area in SC as an example, the influence of different parameters on the prediction results is compared and analyzed, and the optimal parameter settings are given. At the same time, the importance of seismic attributes is analyzed, and the optimal attribute sample set is obtained. The optimal random forest model is used to carry out reservoir prediction with the optimal attribute as the input, and good results are achieved. It is proved that random forest algorithm can effectively predict reservoir. Parameter optimization of random forest model is very important, which affects the efficiency and final prediction accuracy of the algorithm.

References

[1]  Breiman, I. (2001) Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/A:1010933404324
[2]  方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38.
[3]  Reif, D.M., Motsiniger, A.A., McKinne, B.A., et al. (2006) Feature Selection Using a Random Forests Classifier for the Integrated Analysis of Multiple Data Types. CIBCB, 1-8.
https://doi.org/10.1109/CIBCB.2006.330987
[4]  Diaz-Uriarte, R. and Andres, S.A.D. (2005) Variable Selec-tion from Random Forests: Application to Gene Expression Data. Spanish Bioinformatics Conference.
[5]  张华伟, 王明文, 甘丽新. 基于随机森林的文本分类模型研究[J]. 山东大学学报(理学版), 2006, 41(3): 5-9.
[6]  方匡南. 随机森林组合预测理论及其在金融中的应用[M]. 厦门: 厦门大学出版社, 2012.
[7]  王志宏, 韩璐, 戚磊. 随机森立分类方法在储层岩性识别中的应用[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(9): 1083-1088.
[8]  宋建国, 高强山, 李哲. 随机森林回归在地震储层预测中的应用[J]. 石油地球物理勘探, 2016, 51(6): 1202-1211.
[9]  柴明锐, 程丹, 张昌民, 朱锐, 唐勇, 瞿建华. 机器学习方法对砂砾岩岩屑成分的预测——以西北缘X723井百口泉组为例[J]. 西安石油大学学报(自然科学版), 2017, 32(5): 22-28.
[10]  周雪晴, 张占松, 张超谟, 聂昕, 朱林奇, 张宏悦. 基于粗糙集——随机森林算法的复杂岩性识别[J]. 大庆石油地质与开发, 2017, 36(6): 127-132.
[11]  高强山. 基于随机回归森林的储层预测方法研究[D]: [硕士学位论文]. 青岛: 中国石油大学(华东), 2017.
[12]  何健. 基于随机森林算法的储层预测[D]: [硕士学位论文]. 成都: 成都理工大学, 2020.
[13]  Brown, A.R. (2001) Understanding Seismic Attributes. Geophysics, 66, 47-48.
https://doi.org/10.1190/1.1444919
[14]  Chen, Q. and Sidney, S. (1997) Seismic Attribute Technology for Reservoir Forecasting and Monitoring. The Leading Edge, 16, 445-448.
https://doi.org/10.1190/1.1437657
[15]  Taner, M. (2001) Seismic Attributes. CSEG Recorder, 26, 8-56.
[16]  魏佳明, 韩家新. 随机森林在储层孔隙度预测中的应用[J]. 智能计算机与应用, 2018, 8(5): 79-82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133