全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CsPbI3-xBrx钙钛矿薄膜的优化与及光电性能研究
The Optimization and Photovoltaic Properties of CsPbI3-xBrx Perovskite Thin Films

DOI: 10.12677/JAPC.2021.102003, PP. 20-30

Keywords: 无机钙钛矿,太阳能电池,光电性能
Inorganic Perovskite
, Solar Cell, Photovoltaic Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

有机–无机杂化钙钛矿材料中的有机成分造成器件性能衰减是该类光电器件产业化应用中存在的主要挑战,基于铯的全无机卤化物钙钛矿太阳能电池(PSCs)研究对解决这一问题具有重要意义。本文针对无机CsPbI3?xBrx钙钛矿薄膜,通过调控卤素I、Br的成分来调节无机钙钛矿带隙和光电性能。综合考虑无机钙钛矿器件效率与稳定性后,选取了CsPbIBr2作为后续研究的组分,进一步研究了前驱体浓度和钙钛矿膜的退火温度对薄膜形貌、晶相及组装电池光电性能的影响,在基于CsPbIBr2的无机钙钛矿太阳能电池中获得了8.14%的效率。
For industrial application of organic-inorganic hybrid perovskite solar cells, the degradation of de-vice performance caused by the organic components in perovskite is one of the main challenges. The research of all-inorganic cesium-based halide perovskite solar cells is one of the most important strategies for solving this issue. This paper focuses on inorganic CsPbI3?xBrx perovskite thin films. The band gap and photovoltaic performance of inorganic perovskite were adjusted by changing the halogen ratio of I and Br. The composition of CsPbIBr2 was chosen for subsequent perovskite devic-es by considering the requirements of relatively high efficiency and suitable stability. The influence of the precursor concentration and the annealing temperature of the perovskite film on the film morphology, crystal phase and photovoltaic performance of the assembled cell was further studied. The efficiency of 8.14% was obtained in the inorganic perovskite solar cell based on CsPbIBr2.

References

[1]  Nrel, N. (2019) Best Research-Cell Efficiency Chart.
https://www.nrel.gov/pv/cell-efficiency.html
[2]  Cui, P., Wei, D., Ji, J., Song, D., et al. (2017) Highly Efficient Electron-Selective Layer Free Perovskite Solar Cells by Constructing Effective p-n Heterojunction. Solar RRL, 1, 1600027.
https://doi.org/10.1002/solr.201600027
[3]  Akbulatov, A.F., Luchkin, S.Y., Frolova, L.A., et al. (2017) Probing the Intrinsic Thermal and Photochemical Stability of Hybrid and Inorganic Lead Halide Perovskites. The Journal of Physical Chemistry Letters, 8, 1211-1218.
https://doi.org/10.1021/acs.jpclett.6b03026
[4]  Liang, J., Liu, J. and Jin, Z. (2017) All-Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects. Solar RRL, 1, 1700086.
https://doi.org/10.1002/solr.201700086
[5]  Ahmad, W., Khan, J., Niu, G., et al. (2017) Inorganic CsPbI3 Perovskite-Based Solar Cells: A Choice for a Tandem Device. Solar RRL, 1, 1700048.
https://doi.org/10.1002/solr.201700048
[6]  He, X., Qiu, Y. and Yang, S. (2017) Fully-Inorganic Trihalide Perovskite Nanocrystals: A New Research Frontier of Optoelectronic Materials. Advanced Materials, 29, 1700775.
https://doi.org/10.1002/adma.201700775
[7]  Stoumpos, C.C., Malliakas, C.D. and Kanatzidis, M.G. (2013) Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic chemistry, 52, 9019-9038.
https://doi.org/10.1021/ic401215x
[8]  Choi, H., Jeong, J., Kim, H.B., et al. (2014) Cesium-Doped Methylammonium Lead Iodide Perovskite Light Absorber for Hybrid Solar Cells. Nano Energy, 7, 80-85.
https://doi.org/10.1016/j.nanoen.2014.04.017
[9]  Wang, Y., Liu, X., Zhang, T., et al. (2019) The Role of Dimethylammonium Iodide in CsPbI3 Perovskite Fabrication: Additive or Dopant? Angewandte Chemie International Edition, 58, 16691-16696.
https://doi.org/10.1002/anie.201910800
[10]  Giustino, F. and Snaith, H.J. (2016) Toward Lead-Free Perovskite Solar Cells. ACS Energy Letters, 1, 1233-1240.
https://doi.org/10.1021/acsenergylett.6b00499
[11]  Wang, J., Chen, H., Wei, S.H., et al. (2019) Materials Design of Solar Cell Absorbers beyond Perovskites and Conventional Semiconductors via Combining Tetrahedral and Octahedral Coordination. Advanced Materials, 31, 1806593.
https://doi.org/10.1002/adma.201806593
[12]  Ning, W. and Gao, F. (2019) Structural and Functional Diversity in Lead-Free Halide Perovskite Materials. Advanced Materials, 31, 1900326.
https://doi.org/10.1002/adma.201900326
[13]  Chen, C.Y., Lin, H.Y., Chiang, K.M., et al. (2017) All-Vacuum-Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11%. Advanced Materials, 29, 1605290.
https://doi.org/10.1002/adma.201605290
[14]  Xiang, S., Fu, Z., Li, W., Wei, Y., et al. (2018) Highly Air-Stable Carbon-Based α-CsPbI3 Perovskite Solar Cells with a Broadened Optical Spectrum. ACS Energy Letters, 3, 1824-1831.
https://doi.org/10.1021/acsenergylett.8b00820
[15]  Tang, K.C., You, P. and Yan, F. (2018) Highly Stable All-Inorganic Perovskite Solar Cells Processed at Low Temperature. Solar RRL, 2, 1800075.
https://doi.org/10.1002/solr.201800075
[16]  Kulbak, M., Cahen, D. and Hodes, G. (2015) How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. The Journal of Physical Chemistry Letters, 6, 2452-2456.
https://doi.org/10.1021/acs.jpclett.5b00968
[17]  Zhou, S., Tang, R. and Yin, L. (2017) Slow-Photon-Effect-Induced Photoelectrical-Conversion Efficiency Enhancement for Carbon-Quantum-Dot-Sensitized Inorganic CsPbBr3 Inverse Opal Perovskite Solar Cells. Advanced Materials, 29, 1703682.
https://doi.org/10.1002/adma.201703682
[18]  Liu, Z., Sun, B., Liu, X., et al. (2018) Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material. Nano-Micro Letters, 10, Article No. 34.
https://doi.org/10.1007/s40820-018-0187-3
[19]  Liang, J., Wang, C., Wang, Y., et al. (2016) All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 138, 15829-15832.
https://doi.org/10.1021/jacs.6b10227
[20]  Duan, J., Zhao, Y., He, B. and Tang, Q. (2018) High-Purity Inorganic Perovskite Films for Solar Cells with 9.72% Efficiency. Angewandte Chemie, 130, 3849-3853.
https://doi.org/10.1002/ange.201800019
[21]  Stoumpos, C.C., Malliakas, C.D., Peters, J.A., et al. (2013) Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Crystal Growth & Design, 13, 2722-2727.
https://doi.org/10.1021/cg400645t
[22]  Beal, R.E., Slotcavage, D.J., Leijtens, T., et al. (2016) Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. The Journal of Physical Chemistry Letters, 7, 746-751.
https://doi.org/10.1021/acs.jpclett.6b00002
[23]  Habisreutinger, S.N., McMeekin, D.P., Snaith, H.J., et al. (2016) Research Update: Strategies for Improving the Stability of Perovskite Solar Cells. APL Materials, 4, 091503.
https://doi.org/10.1063/1.4961210
[24]  Qiu, J., Qiu, Y., Yan, K., et al. (2013) All-Solid-State Hybrid Solar Cells Based on a New Organometal Halide Perovskite Sensitizer and One-Dimensional TiO2 Nanowire Arrays. Nanoscale, 5, 3245-3248.
https://doi.org/10.1039/c3nr00218g
[25]  Schulz, P., Edri, E., Kirmayer, S., et al. (2014) Interface Energetics in Organo-Metal Halide Perovskite-Based Photovoltaic Cells. Energy and Environmental Science, 7, 1377-1381.
https://doi.org/10.1039/c4ee00168k
[26]  Polander, L.E., Pahner, P., Schwarze, M., et al. (2014) Hole-Transport Material Variation in Fully Vacuum Deposited Perovskite Solar Cells. APL Materials, 2, 081503.
https://doi.org/10.1063/1.4889843
[27]  Gelmetti, I., Montcada, N.F., Pérez-Rodríguez, A., et al. (2019) Energy Alignment and Recombination in Perovskite Solar Cells: Weighted Influence on the Open Circuit Voltage. Energy and Environmental Science, 12, 1309-1316.
https://doi.org/10.1039/C9EE00528E
[28]  Stolterfoht, M., Caprioglio, P., Wolff, C.M., et al. (2019) The Impact of Energy Alignment and Interfacial Recombination on the Internal and External Open-Circuit Voltage of Perovskite Solar Cells. Energy and Environmental Science, 12, 2778-2788.
https://doi.org/10.1039/C9EE02020A
[29]  Eperon, G.E., Paternò, G.M., Sutton, R.J., et al. (2015) Inorganic Caesium Lead Iodide Perovskite Solar Cells. Journal of Materials Chemistry A, 3, 19688-19695.
https://doi.org/10.1039/C5TA06398A
[30]  Liang, J., Wang, C., Wang, Y., et al. (2016) All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 138, 15829-15832.
https://doi.org/10.1021/jacs.6b10227
[31]  Venables, J. (2000) Introduction to Surface and Thin Film Processes. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511755651
[32]  Ding, B., Li, Y., Huang, S.Y., et al. (2017) Material Nucleation/Growth Competition Tuning towards Highly Reproducible Planar Perovskite Solar Cells with Efficiency Exceeding 20%. Journal of Materials Chemistry A, 5, 6840-6848.
https://doi.org/10.1039/C7TA00027H
[33]  Yu, J.C., Kim, D.B., Jung, E.D., et al. (2016) High-Performance Perovskite Light-Emitting Diodes via Morphological Control of Perovskite Films. Nanoscale, 8, 7036-7042.
https://doi.org/10.1039/C5NR05604G
[34]  Eperon, G.E., Burlakov, V.M., Docampo, P., et al. (2014) Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 24, 151-157.
https://doi.org/10.1002/adfm.201302090
[35]  Zhu, W., Zhang, Q., Zhang, C., et al. (2018) Aged Precursor Solution toward Low-Temperature Fabrication of Efficient Carbon-Based All-Inorganic Planar CsPbIBr2 Perovskite Solar Cells. ACS Applied Energy Materials, 1, 4991-4997.
https://doi.org/10.1021/acsaem.8b00972
[36]  Guo, Z., Teo, S., Xu, Z., et al. (2019) Achievable High Voc of Carbon Based All-Inorganic CsPbIBr2 Perovskite Solar Cells through Interface Engineering. Journal of Materials Chemistry A, 7, 1227-1232.
https://doi.org/10.1039/C8TA09838G

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133