全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SmFeN稀土永磁材料的研究进展
Research Progress of SmFeN Rare-Earth Permanent Magnet

DOI: 10.12677/MS.2021.115076, PP. 649-664

Keywords: SmFeN永磁材料,稀土永磁材料,磁粉,制备方法
SmFeN Permanent Magnet
, Rare-Earth Permanent, Magnetic Powder, Preparation Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

SmFeN永磁材料具有高矫顽力、高饱和磁化强度及高居里温度,在航空航天、电动汽车、风力发电及人工智能等新兴领域具有重要的应用价值,再次受到科研人员的重视。本文介绍了SmFeN磁体的晶体结构和氮化机理,综述了采用熔体快淬法、机械合金化、还原扩散法及氢化歧化法后续氮化处理制备SmFeN磁粉的研究进展。此外,重点介绍了块体SmFeN磁体制备的研究进展以及合金元素对SmFeN磁体磁性能的影响。基于目前的研究进展,阐明了SmFeN永磁材料所面临的关键科学问题,并对SmFeN磁体的发展前景做出了展望。
SmFeN rare-earth permanent magnet is a good candidate for high-performance magnets because of their high saturation magnetization and large uniaxial anisotropy. It has important application values in emerging fields such as aerospace, electric vehicles, wind power and artificial intelligence. In this review, the crystal structure and nitrogen mechanism of SmFeN permanent magnet were summarized. Preparation of SmFeN magnetic powders by melt rapid quenching, mechanical alloying, reduction diffusion and hydrogenation disproportionation desorptionre combination followed by nitride treatment were summarized. The preparation research progress of bulk SmFeN permanent magnet and effects of alloying elements on the magnetic properties of SmFeN permanent magnets were reviewed. The confronting problems to prepare high-performance SmFeN permanent magnets were shown, and future development trend was described.

References

[1]  Gutfleisch, O., Willar, M.A., Brück, E., Chen, C.H., Sankar, S.G. and Liu, J.P. (2011) Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Advanced Materials, 23, 821-842.
https://doi.org/10.1002/adma.201002180
[2]  Bradley, A.J. and Taylor, A. (1940) An X-Ray Investigation of Aluminium-Rich Iron-Nickel-Aluminium Alloys After Slow Cooling. Journal of the Institute of Metals, 66, 53-65.
[3]  Strnat, K., Hoffer, G., Olson, J. and Ostertag, W. (1967) A Family of New Cobalt-Base Permanent Magnet Materials. Journal of Applied Physics, 38, 1001-1002.
https://doi.org/10.1063/1.1709459
[4]  Croat, J., Herbst, J.F., Lee R.W. and Pinkerton, F.E. (1984) High-Energy Product Nd-Fe-B Permanent Magnets. Applied Physics Letters, 44, 148-149.
https://doi.org/10.1063/1.94584
[5]  Hoffer, G. and Strnat, K. (1967) Magnet Crystalline Anisotropy of Two Yttrium-Cobalt Compounds. Journal of Applied Physics, 38, 1377-1378.
https://doi.org/10.1063/1.1709630
[6]  Hadjipanayis, G.C., Yadlowsky, E.J. and Wollins, S.H. (1982) A Study of Magnetic Hardening in Sm(Co0.69Fe0.22Cu0.07Zr0.02)7.22. Journal of Applied Physics, 2386, 2386-2388.
https://doi.org/10.1063/1.330866
[7]  Hadjipanayis, G., Hazelton, R., Lawless, K. and Horton, L. (1982) Magnetic Domains in Rare-Earth Cob-Alt Permanent Magnets. IEEE Transactions on Magnetics, 6, 1460-1462.
https://doi.org/10.1109/TMAG.1982.1062192
[8]  张国胜. 成分优化调控 Pr2Fe14B/α-Fe 型纳米复合磁体的微结构和磁性能[D]:[博士学位论文]. 秦皇岛: 燕山大学, 2019.
[9]  Sun, H., Coey, J.M.D., Otani, Y. and Hurley, D.P.F. (1990) Magnetic Properties of a New Series of Rare-Earth Iron Nitrides: R2Fe17Ny(y Approximately 2.6). Journal of Physics: Condensed Matter, 2, Article No. 6465.
https://doi.org/10.1088/0953-8984/2/30/013
[10]  Qi, Q., Kuz’min, M.D., Sun, H. and Coey, J.M.D. (1992) Crystal Fields and Spin Reorientation Transitions in R2Fe17C3-σ(R≡Sm, Er, Tm). Journal of Alloys and Compounds, 182, 313-319.
https://doi.org/10.1016/0925-8388(92)90605-9
[11]  Isnard, O. and Fruchart, D. (1994) Magnetism in Fe-Based Intermetallics: Relationships between Local Environments and Local Magnetic Moments. Journal of Alloys and Com-pounds, 205, 1-15.
https://doi.org/10.1016/0925-8388(94)90757-9
[12]  Yang, Y.C., Sun, H. and Kong, L.S. (1989) Structure and Magnetism of Ndtifesmtife, Gdtife, Tbtife, Dytife, Hotife, Ertife and Ytife Compounds. Science in China Series A-Mathematics Physics Astronomy, 32, 1398-1408.
[13]  Müller, K.H., Dunlop, J.B., Handstein, A., Gebel, B. and Wendhausen, P.A.P. (1996) Permanent Magnet Properties of Sm3(Fe0.93Ti0.07)29Xy (X= C or N). Journal of Magnetism and Magnetic Materials, 157-158, 117-118.
https://doi.org/10.1016/0304-8853(95)01149-8
[14]  Rao, K.V.S.R., Markandeyulu, G., Suresh, K.G., Shah, V.R., Varadaraju, U.V., Venkatesan, M., et al. (1999) Recent Advances in 2:17 and 3:29 Permanent Magnet Materials. Bulletin of Materials Science, 22, 509-517.
[15]  Coey, J.M.D. and Sun, H. (1990) Improved Magnetic Properties by Treatment of Iron-Based Rare Earth Intermetallic Compounds in Anmonia. Journal of Magnetism and Magnetic Materials, 87, L251-L254.
https://doi.org/10.1016/0304-8853(90)90756-G
[16]  Won, H., Hong, Y.K., Lee, W. and Choi, M. (2018) Roles of Coercivity and Remanent Flux Density of Permanent Magnet in Interior Permanent Magnet Synchronous Motor (IPMSM) Performance for Electric Vehicle Applications. AIP Advances, 8, Article ID: 056811.
https://doi.org/10.1063/1.5007789
[17]  Iriyama, T., Kobayashi, K., Imaoka, N., Fukuda, T., Kato, H. and Nak-agawa, Y. (1992) Effect of Nitrogen Content on Magnetic Properties of Sm2Fe17Nx(0 < x < 6). IEEE Transactions on Magnetics, 28, 2326-2331.
https://doi.org/10.1109/20.179482
[18]  Katter, M., Wecker, J., Kuhrt, C., Schultz, L. and Gr?ssinger, R. (1992) Magnetic Properties and Thermal Stability of Sm2Fe17Nx with Intermediate Nitrogen Concentrations. Journal of Mag-netism and Magnetic Materials, 117, 419-427.
https://doi.org/10.1016/0304-8853(92)90099-A
[19]  Wendhausen, P.A.P., Hu, B.P., Handstein, A., Eckert, D., Pitschke, W., Pitschke, W., et al. (1993) Modified Sm2Fe17Ny Permanent Magnets. IEEE Transactions on Magnetics, 29, 2824-2826.
https://doi.org/10.1109/20.281065
[20]  杨应昌, 张晓东, 孔麟书, 潘琪, 葛森林. 新型RE-Fe-N系金属间化合物的结构与磁性[J]. 中国稀土学报, 1990(4): 376-377.
[21]  Wallace, W.E. and Huang, M.Q. (1992) Magnetism of Intemetallic Nitrides: A Review. IEEE Transactions on Magnetics, 28, 2312-2315.
https://doi.org/10.1109/20.179479
[22]  Coey, J.M.D, Stamenov, P., Porter, S.B., Venkatesan, M., Zhang, R. and Iriyama, T. (2019) Sm-Fe-N Revisited; Remanence Enhancement in Melt-Spun Nitroquench Material. Journal of Magnetism and Magnetic Materials, 480, 186-192.
https://doi.org/10.1016/j.jmmm.2019.02.076
[23]  Yang, Y.C., Zhang, X.D., Ge, S.L., Pan, Q., Kong, L.S. and Li, H. (1991) Magnetic and Crystallographic Properties of Novel Fe-Rich Rare-Earth Nitrides of the Type RTiFe11N1-δ. Journal of Applied Physics, 70, 6001-6005.
https://doi.org/10.1063/1.350074
[24]  Ainai, Y., Shiozawa, T., Tatetsu, Y. and Gohda, Y. (2020) First-Principles Study on Surface Stability and Interface Magnetic Properties of SmFe12. Applied Physics Express, 13, Article ID: 045502.
https://doi.org/10.35848/1882-0786/ab7bca
[25]  Kuz’min, M.D. and Coey, J.M.D. (1994) Magnetocrystalline Anisotropy of 3d-4f Intermetallics: Breakdown of the Linear Theory. Physical Review B, 50, Article ID: 12533.
https://doi.org/10.1103/PhysRevB.50.12533
[26]  Katter, M., Wecker, J. and Schultz, L. (1991) Structural and Hard Magnetic Properties of Rapidly Solidified Sm-Fe-N. Journal of Applied Physics, 70, 3188-3196.
https://doi.org/10.1063/1.349302
[27]  Zheng, C.J., Luo, Y., Yu, D.B., Yan, W.L., Li, H.W., Mao, Y.J., Lu, S. and Quan, N.T. (2019) Structure and Magnetic Properties of TbCu7-Type Melt-Spun Sm-Fe-B Alloys. Rare Metals, 38, 151-156.
https://doi.org/10.1007/s12598-017-0879-8
[28]  Le Breton, J.M. and Crisan, O. (2003) A M?ssbauer Investigation of Amorphous Sm-Fe-B Ribbons under Applied Field. Journal of Alloys and Compounds, 351, 59-64.
https://doi.org/10.1016/S0925-8388(02)01088-5
[29]  Shield, J.E. (1999) Phase Formation and Crystallization Behavior of Melt Spua Sm-Fe Based Alloys. Journal of Alloys and Compounds, 291, 222-228.
https://doi.org/10.1016/S0925-8388(99)00129-2
[30]  Kolodkin, D.A., Popov, A.G., Protasov, A.V., Gaviko, V.S., Vasilenko, D.Yu., Kavita, S., et al. (2021) Magnetic Properties of Sm2+αFe17Nx Powders Prepared from Bulk and Strip-Cast Alloys. Journal of Magnetism and Magnetic Materials, 518, Article ID: 167416.
[31]  Liu, K., Wang, S., Feng, Y. and Zhang, Y. (2020) Phase Transformation Mechanism and Magnetic Properties of Sm-Fe Alloys Produced by Melt-Spinning and High-Energy Ball Milling. Journal of Magnetism and Magnetic Materials, 513, Article ID: 167229.
https://doi.org/10.1016/j.jmmm.2020.167229
[32]  Lin, G.B., Luo, X., Bi, W.L., Bao, X.Q. and Mao, W.M. (2014) Preparation of Sm2Fe17 Columnar Grains Ribbons by Rapid Quenching. Advanced Materials Research, 1004-1005, 367-370.
https://doi.org/10.4028/www.scientific.net/AMR.1004-1005.367
[33]  Benjamin, J.S. (1970) Dispersion Strengthened Superalloys by Mechanical Alloying. Metallurgical Transactions, 1, 2943-2951.
https://doi.org/10.1007/BF03037835
[34]  Cairns, R.L. and Benjamin, J.S. (1973) Stress Rupture Behavior of a Dispersion Strengthened Superalloy. Journal of Engineering Materials and Technology, 95, 10-14.
https://doi.org/10.1115/1.3443097
[35]  Xu, K., Liu, Z., Yu, H., Zhong, X., Zhang, H. and Liu, Z. (2020) Im-proved Efficiency for Preparing Hard Magnetic Sm2Fe17NX Powders by Plasma Assisted Ball Milling Followed by Ni-triding. Journal of Magnetism and Magnetic Materials, 500, Article ID: 166383.
https://doi.org/10.1016/j.jmmm.2019.166383
[36]  Popovich, A.A., Razumov, N.G. and Verevkin, A.S. (2016) Effect of Niobium, Titanium and Molybdenum Additions to Sm2Fe17 Obtained by Mechanical Alloying. ARPN Journal of Engineering and Applied Sciences, 11, 11556-11560.
[37]  Okada, S., Suzuki, K., Node, E., Takagi, K., Ozaki, K. and Enokido, Y. (2017) Preparation of Submicron-Sized Sm2Fe17N3 Fine Powder with High Coercivity by Reduc-tion-Diffusion Process. Journal of Alloys and Compounds, 695, 1617-1623.
https://doi.org/10.1016/j.jallcom.2016.10.306
[38]  Matsuda, R., Yarimizu, K. and Matsuura, M. (2019) Fabrication of Cr Diffused Sm2Fe17Nx Core-shell Magnetic Powders by Reduction-Diffusion Proc. FuntaiOyobiFummatsu Ya-kin/Journal of the Japan Society of Powder and Powder Metallurgy, 66, 116-121.
[39]  Ishikawa, T., Yokosawa, K., Watanabe, K. and Ohmori, K. (2011) Modified Process for High-Performance Anisotropic Sm2Fe17N3 Magnet Powder. Journal of Physics: Conference Series, 266, Article ID: 012033.
https://doi.org/10.1088/1742-6596/266/1/012033
[40]  Atsushi, K., Ishikawa, T., Yasuda, S., Takeya, K., Ishizaka, K., Iseki, T., et al. (1999) Sm2Fe17Nx Magnet Powder Made by Reduction and Diffusion Method. IEEE Transactions on Magnetics, 35, 3322-3324.
https://doi.org/10.1109/20.800512
[41]  Chen, H., Xu, J. and Zheng, J. (2016) The Pretreatment of Reduc-tion-Diffusion Prepared Sm-Fe Alloy Using CaH2 Before Nitriding Process. Science of Advanced Materials, 8, 1978-1983.
https://doi.org/10.1166/sam.2016.2792
[42]  Yang, J., Zhou, S.Z, Zhou, M.C., Li, F.B., Zhao, J.H. and Wang, R. (1991) The Preparation and Magnetic Properties of Sm2Fe17Nx Compounds. Materials Letter, 12, 242-248.
https://doi.org/10.1016/0167-577X(91)90006-R
[43]  Zinkevich, M., Mattern, N., Handstein, A. and Gutfleisch, O. (2002) Thermodynamics of Fe-Sm, Fe-H. and H-Sm Systems and Its Application to the Hydro-gen-Disproportionation-Desorption-Recombination (HDDR) Process for the System Sm2Fe17. Journal of Alloys and Compounds, 339, 118-139.
https://doi.org/10.1016/S0925-8388(01)01990-9
[44]  Nakamura, H., Sugimoto, S., Tanaka, T., Okada, M. and Homma, M. (1995) Effect of Additional Element on Hydogen absorption and Desorption Characteristics of Sm2Fe17 Compounds. Journal of Alloys and Compounds, 222, 13-17.
https://doi.org/10.1016/0925-8388(94)04904-1
[45]  Zhao, X.G., Zhang, Z.D., Liu, W., Xiao, Q.F. and Sun, X.K. (1995) Structual and Magnetic Properties of SmFeN Magnets Prepared by Hydrogenation and Nitrogenation Processes. Journal of Magnetism and Magnetic Materials, 148, 419-425.
https://doi.org/10.1016/0304-8853(95)00021-6
[46]  Zhang, D.T., Yue, M. and Zhang, J.X. (2007) Study on Bulk Sm2Fe17Nx Sintered Magnets Prepared by Spark Plasma Sintering. Powder Metallurgy, 50, 215-218.
https://doi.org/10.1179/174329007X169128
[47]  Otani, Y., Moukarika, A., Sun, H. and Coey, J.M.D. (1991) Metal Bonded Sm2Fe17N3-δ Magnets. Journal of Applied Physics, 69, 6735-6737.
https://doi.org/10.1063/1.348900
[48]  Matsuura, M., Shiraiwa, T., Tezuka, N., Sugimoto, S., Shoji, T., Sakuma, N. and Haga, K. (2018) High Coercive Zn-Bonded Sm-Fe-N Magnets Prepared Using Fine Zn Particles with Low Oxygen Content. Journal of Magnetism and Magnetic Materials, 452, 243-248.
https://doi.org/10.1016/j.jmmm.2017.12.059
[49]  Otogawaa, K., Takagib, K. and Asahi, T. (2018) Consolidation of Sm2Fe17N3 Magnets with Sm-Based Eutectic Alloy Binder. Journal of Alloys and Compounds, 746, 19-26.
https://doi.org/10.1016/j.jallcom.2018.02.266
[50]  Hulbert, D.M., Anders, A., Dudina, D.V., Andersson, J., Jiang, D., Unuvar, C., et al. (2008) The Absence of Plasma in “Spark Plasma Sintering. Journal of Applied Physics, 104, Ar-ticle ID: 033305.
https://doi.org/10.1063/1.2963701
[51]  Takagi, K., Nakayama, H., Ozaki, K. and Kobayashi, K. (2012) Microstructural Behavior on Particle Surfaces and Interfaces in Sm2Fe17N3 Powder Compacts during Low-Temperature Sintering. Journal of Magnetism and Magnetic Materials, 324, 1337-1341.
https://doi.org/10.1016/j.jmmm.2011.11.035
[52]  Saito, T., Deguchi, T. and Yamamoto, H. (2017) Magnetic Properties of Sm-Fe-N Bulk Magnets Produced from Cu-Plated Sm-Fe-N Powder. AIP Advances, 7, Article ID: 056204.
https://doi.org/10.1063/1.4973396
[53]  Lu, C.F., Zhu, J., Gong. J.X. and Gao, X.X. (2018) A Method to Improving the Coercivity of Sintered Anisotropic Sm-Fe-N Magnets. Journal of Magnetism and Magnetic Materials, 461, 48-52.
https://doi.org/10.1016/j.jmmm.2018.04.047
[54]  Tetsuji, S. and Nishio-Hamane, D. (2015) Magnetic Properties of Sm-Fe-N Bulk Magnets Prepared from Sm2Fe17N3 Melt-Spun Ribbons. Journal of Applied Physics, 117, Article ID: 17D130.
https://doi.org/10.1063/1.4916552
[55]  Takagi, K., Soda, R., Jinno, M. and Yamaguchi, W. (2020) Possibility of High-Performance Sm2Fe17N3 Sintered Magnets by Low-Oxygen Powder Metallurgy Process. Journal of Magnetism and Magnetic Materials, 506, Article ID: 166811.
https://doi.org/10.1016/j.jmmm.2020.166811
[56]  Yamaguchi, W., Soda, R. and Takagi, K. (2019) Role of Surface Iron Oxides in Coercivity Deterioration of Sm2Fe17N3 Magnet Associated with Low Temperature Sintering. Materials Transactions, 60, 479-483.
https://doi.org/10.2320/matertrans.M2018358
[57]  Valiev, R.Z., Mishral, R.S., Grozal, J. and Mukherjee, A.K. (1996) Processing of Nanostructured Nickel by Severe Plastic Deformation Consolidation of Ball-Milled Powder. Scripta Materialia, 34, 1443-1448.
https://doi.org/10.1016/1359-6462(95)00676-1
[58]  Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V. (2000) Bulk Nanostructured Materials from Severe Plastic Deformation. Progress in Materials Science, 45, 103-189.
https://doi.org/10.1016/S0079-6425(99)00007-9
[59]  Korznikov, A.V., Ivanisenko, Y.V., Laptionok, D.V., Sa-farov, I. M., Pilyugin, V.P. and Valiev, R.Z. (1994) Influence of Severe Plastic Deformation on Structure and Phase Composition of Carbon Steel. Nanostructured Materials, 4, 159-167.
https://doi.org/10.1016/0965-9773(94)90075-2
[60]  Senkov, O.N., Froes, F.H., Stolyarov, V.V., Valiev, R.Z. and Liu, J. (1998) Microstructure of Aluminum-Iron Alloys Subjected to Severe Plastic Deformation. Scripta Materialia, 38, 1511-1516.
https://doi.org/10.1016/S1359-6462(98)00073-6
[61]  Shchetinin, I.V., Bordyuzhin, I.G., Sundeev, R.V., Men-ushenkov, V.P., Kamynin, A.V., Verbetsky, V.N., et al. (2020) Structure and Magnetic Properties of Sm2Fe17Nx Alloys after Severe Plastic Deformation by High Pressure Torsion. Materials Letters, 274, Article ID: 127993.
https://doi.org/10.1016/j.matlet.2020.127993
[62]  Kataoka, K., Matsuura, M., Tezuka, N. and Sugimoto, S. (2015) Influence of Swaging on the Magnetic Properties of Zn-Bonded Sm-Fe-N Magnets. Materials Transactions, 56, 1698-1702.
https://doi.org/10.2320/matertrans.M2015190
[63]  Veselova, S.V., Tereshina, I.S., Verbetsky, V.N., Neznakhin, D.S., Tereshina-Chitrova, E.A., Kaminskaya, T.P., Karpenkova, A.Y., Akimovaa, O.V., Gorbunove, D.I. and Savchenko, A.G. (2020) Structure and Magnetic Properties of (Sm, Ho) 2Fe17Nx (x= 0; 2.4). Journal of Magnetism and Magnetic Materials, 502, Article ID: 166549.
https://doi.org/10.1016/j.jmmm.2020.166549
[64]  Saito, T., Miyoshi, H. and Nishio-Hamane, D. (2012) Magnetic Properties of Sm-Fe-Ti Nanocomposite Magnets with a ThMn12 Structure. Journal of Alloys and Compounds, 519, 144-148.
https://doi.org/10.1016/j.jallcom.2011.12.156
[65]  Ivanova, G.V., Makarova, G.M. and Markin, P.E. (2011) Phase Composition and Magnetic Properties of Phases in Sm2(Fe1-x-yMnxSiy)17 Alloys (with 0 ≤ x ≤ 0.1 and 0 ≤ y ≤ 0.3). The Physics of Metals and Metallography, 112, Article No. 343.
https://doi.org/10.1134/S0031918X11040223
[66]  Yabe, H. and Kuji, T. (2006) Crystal Structure and Its Mag-netization of Rare Earth-Iron Alloys by Mechanical Alloying. Journal of Alloys and Compounds, 408-412, 313-318.
https://doi.org/10.1016/j.jallcom.2005.04.056
[67]  Marking, G.A. and Franzen, H.F. (1994) ZrNbP and HfNbP, New Phases with the Co2Si Structure. Journal of Alloys and Compounds, 204, L17-L20.
https://doi.org/10.1016/0925-8388(94)90059-0
[68]  Popovich, A.A., Verevkin, A.S., Razumov, N.G. and Popo-vich, T.A. (2016) Research of the Effect of Sm2Fe17 Alloying with Titanium and Molybdenum on Magnetic Properties. ARPN Journal of Engineering and Applied Sciences, 11, 1745-1749.
[69]  Wang, Z. and Dunlap, R.A. (1993) Effects of Al Substitutions on the Magnetic Anisotropy of Sm2Fe17 Compounds. Journal of Physics: Condensed Matter, 5, Article No. 2407.
https://doi.org/10.1088/0953-8984/5/15/011
[70]  Al-Omari, I.A., Jaswal S.S., Fernando, A.S. and Sellmyer, D.J. (1994) M?ssbauer Study of Permanent-Magnet Materials: Sm2Fe17-xAlx Compounds. Journal of Applied Physics, 76, 6159-6161.
https://doi.org/10.1063/1.358340
[71]  Cheng, Z.H., Shen, B.G., Lian, B., Zhang, J.X., Wang, F.W., Zhang, S.Y. and Gong, H.Y. (1995) The Change in Magnetic Anisotropy in R2Fe17-xAlx Compounds (R = Sm or Tb). Journal of Physics: Condensed Matter, 7, Article No. 4707.
https://doi.org/10.1088/0953-8984/7/24/010
[72]  Saito, T. and Nishio-Hamane, D. (2018) Effects of Titanium and Zirconium Addition on Magnetic Properties of Sm2Fe17 Melt-Spun Ribbons. AIP Advances, 8, Article ID: 056230.
https://doi.org/10.1063/1.5006225
[73]  Xu, J., Zheng, J., Chen, H., Qiao, L., Ying, Y., Cai, W., Li, W., Yu, J., Lin, M. and Che, S. (2020) Enhanced Maximum Energy Product of (Sm1-yYy)2Fe17Nx Caused by Abundant Yttrium Doping. Journal of Rare Earths, 38, 1060-1068.
https://doi.org/10.1016/j.jre.2019.12.004
[74]  Li, X., Lou, L., Song, W., Huang, G., Hou, F., Zhang, Q., Zhang, H., Xiao, J., Wen, B. and Zhang, X. (2017) Novel Bimorphological Anisotropic Bulk Nanocomposite Materials with High Energy Products. Advanced Materials, 29, Article ID: 1606430.
https://doi.org/10.1002/adma.201606430
[75]  Huang, G., Li, X., Lou, L., Hua, Y., Zhu, G., Li, M., Zhang, H., Xiao, J., Wen, B., Yue, M. and Zhang, X. (2018) Engineering Bulk, Layered, Multicomponent Nanostructures with High Energy Density. Small, 14, Article ID: 1800619.
https://doi.org/10.1002/smll.201800619
[76]  Li, T., Jiang, B., Lou, L., Hua, Y., Gao, J., Wang, J. and Li, X. (2020) Bulk SmCo3 Nanocrystalline Magnets with Magnetic Anisotropy. Journal of Magnetism and Magnetic Materials, 502, Article ID: 166552.
https://doi.org/10.1016/j.jmmm.2020.166552
[77]  Xu, X., Li, Y., Zhang, H., Ma, Z., Zhang, D. and Yue, M. (2020) Heterostructured (SmCo7/FeCo)/SmCo5 Multicomponent Magnets Fabricated by High-Pressure Thermal Com-pression. Journal of Alloys and Compounds, 831, Article ID: 154810.
https://doi.org/10.1016/j.jallcom.2020.154810

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133