全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2021 

加密数字货币市场与美国股票市场联动性研究
Research on the linkage between the Cryptocurrency Market and the U.S. Stock Market

DOI: 10.12677/FIN.2021.113022, PP. 188-200

Keywords: 市场联动性,投资者情绪,t-Copula-GARCH(1,1)-Skewed-T模型,加密数字货币,美国股票市场
Linkage
, Investor Sentiment, t-Copula-GARCH(1,1)-Skewed-T Model, Cryptocurrency, US Stock Market

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究加密数字货币市场和美国股票市场之间是否存在一定的相关性并对某些事件表现出相同的反应,本文以2016年1月5日到2021年2月5日纽交所比特币指数(NYXBT)和美国标普500指数(S&P500)数据为样本,建立t-Copula-GARCH-Skewed-T模型对加密数字货币市场和美国股票市场间的联动性进行了研究。结果发现:样本研究期内,加密数字货币市场和美国股票市场的相关性显著增强,并在事件发生前后呈现出类似的变化趋势。结合相关事件进行分析,本文认为政策的放松、中美贸易摩擦、新冠疫情爆发等特定事件通过影响投资者情绪,从而影响加密数字货币市场和美国股票市场的联动性,且样本研究期内新冠疫情的爆发对两市场间联动性波动的影响最大。
Based on t-Copula-GARCH-Skewed-T model, we selected the NYSE Bitcoin Index (NYXBT) and the US S&P500 Index (S&P500) price-day transaction data from January 5th, 2016 to February 5th, 2021 as samples and measured the linkage between the cryptocurrency market and the U.S. stock market. The results show that the correlation between these two markets during this period was signifi-cantly enhanced and there existed obvious characteristics of periodic fluctuation. Meanwhile, it is found that there existed connections between certain events and dynamic conditional correlation. Specific events such as policy relaxation, Sino-US trade frictions, and the outbreak of COVID-19 tend to influence the linkage between the cryptocurrency market and the US stock market by affecting investor sentiment. It is shown that during the sample-studied period, the outbreak of COVID-19 had the greatest impact on the linkage between two markets.

References

[1]  Nakamoto, S. (2008) Bitcoin: A Peer-to-Peer Electronic Cash System.
[2]  Engle, R.F. (1982) Autoregressive Condi-tional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987-1007.
https://doi.org/10.2307/1912773
[3]  Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroskedas-ticity. Journal of Econometrics, 31, 307-327.
https://doi.org/10.1016/0304-4076(86)90063-1
[4]  Engle, R. (2002) Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedas-ticity Models. Journal of Business & Economic Statistics, 20, 339-350.
https://doi.org/10.1198/073500102288618487
[5]  Patton, A.J. (2006) Modelling Asymmetric Exchange Rate Dependence. International Economic Review, 47, 527-556.
https://doi.org/10.1111/j.1468-2354.2006.00387.x
[6]  张尧庭. 连接函数(copula)技术与金融风险分析[J]. 统计研究, 2002(4): 48-51.
[7]  韦艳华, 张世英. 金融市场的相关性分析——Copula-GARCH模型及其应用[J]. 系统工程, 2004, 22(4): 7-12.
[8]  韦艳华. Copula理论及其在多变量金融时间序列分析上的应用研究[D]: [博士学位论文]. 天津: 天津大学, 2004.
[9]  张世英. 金融市场非对称尾部相关结构的研究[J]. 管理学报, 2005, 2(5): 601-605.
[10]  Aloui, R., A?ssa, M.S.B. and Nguyen, D.K. (2010) Global Financial Crisis, Extreme Interdependences, and Contagion Effects: The Role of Economic Structure? Journal of Banking and Finance, 35, 130-141.
https://doi.org/10.1016/j.jbankfin.2010.07.021
[11]  方艳, 贺学会, 刘凌, 曹亚晖. “沪港通”实现了我国资本市场国际化的初衷吗?——基于多重结构断点和t-Copula-aDCC-GARCH模型的实证分析[J]. 国际金融研究, 2016(11): 76-86.
[12]  李红权, 何敏园. 我国股市的对外溢出效应与国际影响力研究——基于Copula-DCC-GARCH模型[J]. 系统科学与数学, 2017, 37(8): 1790-1806.
[13]  黄洛. 数字加密货币市场风险分析[D]: [硕士学位论文]. 南昌: 南昌大学, 2020.
[14]  刘肖峰. 数字货币价格的影响因素实证研究[D]: [硕士学位论文]. 济南: 山东大学, 2020.
[15]  陈道富, 王刚. 比特币的发展现状、风险特征和监管建议[J]. 学习与探索, 2014(4): 88-92.
[16]  黄锐. 金融区块链技术的监管研究[J]. 学术论坛, 2016, 39(10):53-59.
[17]  Dyhrberg, A.H. (2016) Hedging Capabilities of Bitcoin. Is It the Virtual Gold? Finance Research Letters, 16, 139-144.
https://doi.org/10.1016/j.frl.2015.10.025
[18]  Demir, E., Gozgor, G., Lau, C.K.M. and Vigne, S.A. (2018) Does Economic Policy Uncertainty Predict the Bitcoin Returns? An Empirical Investigation. Finance Research Letters, 26, 145-149.
https://doi.org/10.1016/j.frl.2018.01.005
[19]  Conlon, T. and McGee, R. (2020) Safe Haven or Risky Hazard? Bitcoin during the Covid-19 Bear Market. Finance Research Letters, 35, Article ID: 101607.
https://doi.org/10.1016/j.frl.2020.101607
[20]  徐黎明, 李靖. 中美比特币市场溢出效应的实证研究[J]. 统计与决策, 2016(13): 156-159.
[21]  Corbet, S., Lucey, B. and Yarovaya, L. (2018) Datestamping the Bitcoin and Ethereum Bubbles. Finance Research Letters, 26, 81-88.
https://doi.org/10.1016/j.frl.2017.12.006
[22]  Matkovskyy, R. and Jalan, A. (2019) From Financial Markets to Bitcoin Markets: A Fresh Look at the Contagion Effect. Finance Research Letters, 31, 93-97.
https://doi.org/10.1016/j.frl.2019.04.007
[23]  曾莹, 曾柳畅. 加密货币价格溢出效应的DCC-GARCH模型[J]. 湖北工业大学学报, 2020, 35(4): 104-109.
[24]  Dyhrberg, A.H. (2015) Bitcoin, Gold and the Dollar—A GARCH Volatility Analysis. Finance Research Letters, 16, 85-92.
https://doi.org/10.1016/j.frl.2015.10.008
[25]  侯叶子. 基于GARCH-Copula模型的金融资产间相关关系研究[D]: [硕士学位论文]. 西安: 西安工程大学, 2019.
[26]  康龙. 基于时变T-Copula模型的期货合约相依关系研究[J]. 经济与管理, 2019, 33(6): 72-79.
[27]  Vogiatzoglou, M. (2021) Dynamic Copula Toolbox 3.0 https://www.mathworks.com/matlabcentral/fileexchange/29303-dynamic-copula-toolbox-3-0
[28]  Powell, J.H. (2017) Innovation, Technology, and the Payments System.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133