全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

城市污水处理厂甲烷排放研究——以芜湖市为例
Study on Methane Emission from Wastewater Treatment Plants—A Case Study of Wuhu City

DOI: 10.12677/AG.2021.115063, PP. 677-689

Keywords: 污水处理厂,甲烷排放,碳排放,中小城市
Wastewater Treatment Plants
, Methane Emission, Carbon Emission, Small-Medium Cities

Full-Text   Cite this paper   Add to My Lib

Abstract:

人类活动造成的温室气体排放被认为是导致全球气候变暖的主要原因之一,甲烷(CH4)在其中的作用仅次于二氧化碳,而污水处理厂则是重要的甲烷排放源之一。为了解中小城市污水处理厂的CH4排放特征及其控制因素,对芜湖市污水处理厂CH4排放通量进行观测研究,并利用IPCC推荐的方法对其甲烷年排放通量进行了初步估算。结果表明:1) 芜湖市污水处理厂的CH4排放速率在517.28~1,075.26 mg/(m2?h)之间,具有一定的时空变异特征,具体表现为:时间上,CH4排放峰值出现在11月份;空间上,污水处理厂进水口的CH4排放速率显著高于其他构筑物。2) 污水处理厂甲烷排放速率的主要影响因素为水体pH、总磷和总氮含量。3) 根据实测法估算得出芜湖市污水处理厂甲烷年排放量为46,583.83 kg,比IPCC推荐方法的估算值高46.71%。
Greenhouse gas caused by human activities is considered to be one of the main causes of global warming. The influence of methane (CH4) is second only to that of carbon dioxide. Wastewater treatment plants are one of the important sources of methane emissions. In order to explore the features and influencing factors of CH4 emission from wastewater treatment plants in small-medium cities, the study observed and estimated the CH4 emission flux of Wuhu wastewater treatment plants. The annual methane emission flux of the wastewater treatment plant was estimated by the method recommended by IPCC. The results show that: 1) The CH4 emission rate of the wastewater treatment plants ranged from 517.28 to 1,075.26 mg/(m2?h) with a certain temporal and spatial variation. In time, CH4 emission peak appeared in November; in space, the CH4 emission rate at the inlet of wastewater treatment plant was significantly higher than that of other structures. 2) The main influencing factors of methane emission rate in wastewater treatment plant were water quality factors, including pH, total phosphorus and total nitrogen in water. 3) The annual methane emission from wastewater treatment plants in Wuhu City estimated by the measured value was 46,583.83 kg, which was 46.71% higher than that estimated by IPCC algorithm.

References

[1]  Nisbet, E. (1990) Climate Change and Methane. Nature, 347, 23-23.
https://doi.org/10.1038/347023a0
[2]  王郭臣. 长江河口湿地植被固碳对CH4和CO2产生的贡献[D]: [硕士学位论文]. 上海: 华东师范大学, 2018.
[3]  世界气象组织. WMO温室气体公报2018 [R]. 日内瓦: 世界气象组织, 2018: 1-9.
[4]  孙波. 土壤中甲烷的释放[M]//赵其国. 土壤物质循环与农业和环境. 南京: 江苏科学技术出版社, 1995: 128-143.
[5]  任仁. 温室气体甲烷的人为源及其减排的技术措施[J]. 环境导报, 2000(4): 42-43.
[6]  宋长春. 湿地生态系统碳循环研究进展[J]. 地理科学, 2003, 23(5): 622-628.
[7]  陈槐. 中国特有湿地甲烷排放研究[Z]. 成都: 中国科学院成都生物研究所, 2012.
[8]  陈碧辉. 温室气体源汇及其对气候影响的研究现状[J]. 气象科学, 2005, 26(1): 586-590.
[9]  唐俊红, 向武, 鲍征宇, 等. 地质成因的甲烷释放对大气的影响[J]. 地质科技情报, 2006, 25(2): 75-82.
[10]  Buffett, B. and Archer, D. (2004) Global Inventory of Methane Clathrate: Sensitivity to Changes in the Deep Ocean. Earth and Planetary Science Letters, 227, 185-199.
[11]  IPC. (2013) The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Inter-Governmental Panel on Climate Change. Cambridge University Press, Cambridge.
https://doi.org/10.1016/j.epsl.2004.09.005
[12]  段晓男, 王效科, 陈琳, 等. 乌梁素海湖泊湿地植物区甲烷排放规律[J]. 环境科学, 2007, 28(3): 455-459.
[13]  姚守平. 若尔盖高原花湖湖滨湿地甲烷排放研究[D]: [硕士学位论文]. 成都: 中国科学院研究生院(成都生物研究所), 2007.
[14]  祝栋林. 太湖及玄武湖甲烷气体产生、释放及影响机制研究[D]: [博士学位论文]. 南京: 南京大学, 2012.
[15]  艾永平. 城市湖泊的甲烷排放时空变化及其与水文水质关系[D]: [硕士学位论文]. 南昌: 南昌大学, 2009.
[16]  温志丹, 宋开山, 赵莹, 邵田田, 李思佳. 长春城市水体夏秋季温室气体排放特征[J]. 环境科学, 2016, 37(1): 102-111.
[17]  赵玮, 朱孔贤, 黄文敏, 等. 三峡水库湖北段甲烷排放通量时空特征及其影响因素分析[J]. 水生生物学报, 2013, 37(4): 776-781.
[18]  Yoshida, H., M?nster, J. and Scheutz, C. (2014) Plant-Integrated Measurement of Greenhouse Gas Emissions from a Municipal Wastewater Treatment Plant. Water Research, 61, 108-118.
https://doi.org/10.1016/j.watres.2014.05.014
[19]  El-Fadel, M. and Massound, M. (2001) Methane Emissions from Wastewater Management. Environmental Pollution, 114, 177-185.
https://doi.org/10.1016/S0269-7491(00)00222-0
[20]  IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories. IGES, Kanagawa.
[21]  郑思伟, 唐伟, 徐海岚, 等. BOD/COD选取对污水处理厂甲烷排放量估算的影响——以杭州市为例[J]. 环境卫生工程, 2017, 25(3): 66-68.
[22]  孙祥超, 陈伟, 贺姝峒, 等. 天津市生活污水甲烷排放量估算研究[J]. 资源节约与环保, 2018(4): 119-120, 123.
[23]  Rodriguez-Caballero, A., Aymerich, I., Poch, M. and Pijuan, M. (2014) Evaluation of Process Conditions Triggering Emissions of Green-House Gases from a Biological Wastewater Treatment System. Science of the Total Environment, 493, 384-391.
https://doi.org/10.1016/j.scitotenv.2014.06.015
[24]  Toyoda, S., Suzuki, Y., Hattori, S., et al. (2011) Isotopomer Analysis of Production and Consumption Mechanisms of N2O and CH4 in an Advanced Wastewater Treatment System. Environmental Science & Technology, 45, 917-922.
https://doi.org/10.1021/es102985u
[25]  闫旭, 韩云平, 李琦路, 等. 污水处理过程中温室气体产生研究进展[J]. 环境化学, 2015(5): 853-862.
[26]  章宏学. 芜湖市城市污水系统存在的问题分析与研究[J]. 智能城市, 2018, 4(21): 62-63.
[27]  Goldenfum, J.A. (2009) GHG Measurement Guidelines for Freshwater Reservoirs: Report of the UNESCO/IHA Greenhouse Gas Emission from Freshwater Reservoirs Research Project. UNESCO, Paris.
[28]  国家环境保护总局. 水和废水监测分析方法[M]. 第四版. 北京: 中国环境科学出版社, 2002: 243-258.
[29]  任艺洁, 邓正苗, 谢永宏, 等. 洞庭湖湿地洪水期甲烷扩散和气泡排放通量估算及水环境影响分析[J]. 湖泊科学, 2019, 31(4): 187-199.
[30]  Amouroux, D., Roberts, G., Rapsomanikis, S. and Andreae, M.O. (2002) Biogenic Gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-Shore and Shelf Waters of the North-Western Black Sea. Estuarine Coastal and Shelf Science, 54, 575-587.
https://doi.org/10.1006/ecss.2000.0666
[31]  吴美容, 张瑞, 周俊, 等. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014, 65(5): 1602-1606.
[32]  王洁, 袁俊吉, 刘德燕, 等. 滨海湿地甲烷产生途径和产甲烷菌研究进展[J]. 应用生态学报, 2016, 27(3): 993-1001.
[33]  王保玉, 刘建民, 韩作颖, 等. 产甲烷菌的分类及研究进展[J]. 基因组学与应用生物学, 2014, 33(2): 418-425.
[34]  省级温室气体清单编写组. 省级温室气体清单编制指南[M]. 北京: 国家发展改革委能源研究所, 2010.
[35]  Ma, Z., Feng, P., Gao, Q., et al. (2015) CH4 Emission and Reduction Potential in Wastewater Treatment of China. Advances in Climate Change Research, 6, 216-224.
[36]  张星, 陈敏东, 高庆先, 等. 生活污水处理厂甲烷的释放通量及其影响因素[J]. 江西农业大学学报, 2018, 40(3): 657-662.
[37]  Daelman, M.R.J., van Voorthuizen, E.M., van Dongen U.G.J.M., et al. (2012) Methane Emission during Municipal Wastewater Treatment. Water Research, 46, 3657-3670.
https://doi.org/10.1016/j.watres.2012.04.024

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133