|
Pure Mathematics 2021
Gorenstein强FI-内射模
|
Abstract:
[1] | Enochs, E.E. and Jenda, O.M.G. (1995) Gorenstein Injective and Projective Modules. Mathematische Zeitschrift, 220, 611-633. https://doi.org/10.1007/BF02572634 |
[2] | Mao, L.X. and Ding, N.Q. (2007) FI-Injective Resolutions and Dimensions. Journal of Algebra, 309, 367-385.
https://doi.org/10.1016/j.jalgebra.2006.10.019 |
[3] | Stenstr?m, B. (1970) Coherent Rings and FP-Injective Modules. Journal of the London Mathematical Society, 2, 323-329. https://doi.org/10.1112/jlms/s2-2.2.323 |
[4] | Megibben, C. (1970) Absolutely Pure Modules. Proceedings of the American Mathematical Society, 26, 561-566.
https://doi.org/10.1090/S0002-9939-1970-0294409-8 |
[5] | 陈东, 胡葵. 关于Gorenstein FI-内射模[J]. 西北师范大学学报(自然科学版), 2019, 55(3): 9-13. |
[6] | Holm, H. (2004) Gorenstein Homological Dimensions. Journal of Pure and Applied Algebra, 189, 167-193.
https://doi.org/10.1016/j.jpaa.2003.11.007 |
[7] | Enochs, E.E. and Jenda, O.M.G. (2000) Relative Homological Algebra. Walter de Gruyter, New York.
https://doi.org/10.1515/9783110803662 |
[8] | Faith, C. and Walker, E.A. (1967) Direct-Sum Representations of Injective Modules. Journal of Algebra, 5, 203-221.
https://doi.org/10.1016/0021-8693(67)90035-X |
[9] | Rotman, J.J. (2009) An Introduction to Homological Algebra. Springer, New York. https://doi.org/10.1007/b98977 |
[10] | Eklof, P. and Trlifaj, J. (2001) How to Make Ext Vanish. Bulletin of the London Mathematical Society, 33, 31-41.
https://doi.org/10.1112/blms/33.1.41 |