全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gorenstein强FI-内射模
Gorenstein Strongly FI-Injetive Modules

DOI: 10.12677/PM.2021.115110, PP. 966-972

Keywords: 强FI-内射模,Gorenstein强FI-内射模,余挠对
Strongly FI-Injetive Module
, Gorenstein Strongly FI-Injetive Module, Cotorsion Pair

Full-Text   Cite this paper   Add to My Lib

Abstract:

引入强FI-内射模和Gorenstein强FI-内射模,讨论了这两类模的同调性质,证明了(1SFI(R),SFI(R))是遗传完备的余挠对。
The strongiy FI-injective modules and the Gorenstein strongly FI-injective modules are introduced, and the homology properties of these two types of modules are discussed. It is proved that (1SFI(R),SFI(R)) is a hereditary-complete cotorsion pair.

References

[1]  Enochs, E.E. and Jenda, O.M.G. (1995) Gorenstein Injective and Projective Modules. Mathematische Zeitschrift, 220, 611-633.
https://doi.org/10.1007/BF02572634
[2]  Mao, L.X. and Ding, N.Q. (2007) FI-Injective Resolutions and Dimensions. Journal of Algebra, 309, 367-385.
https://doi.org/10.1016/j.jalgebra.2006.10.019
[3]  Stenstr?m, B. (1970) Coherent Rings and FP-Injective Modules. Journal of the London Mathematical Society, 2, 323-329.
https://doi.org/10.1112/jlms/s2-2.2.323
[4]  Megibben, C. (1970) Absolutely Pure Modules. Proceedings of the American Mathematical Society, 26, 561-566.
https://doi.org/10.1090/S0002-9939-1970-0294409-8
[5]  陈东, 胡葵. 关于Gorenstein FI-内射模[J]. 西北师范大学学报(自然科学版), 2019, 55(3): 9-13.
[6]  Holm, H. (2004) Gorenstein Homological Dimensions. Journal of Pure and Applied Algebra, 189, 167-193.
https://doi.org/10.1016/j.jpaa.2003.11.007
[7]  Enochs, E.E. and Jenda, O.M.G. (2000) Relative Homological Algebra. Walter de Gruyter, New York.
https://doi.org/10.1515/9783110803662
[8]  Faith, C. and Walker, E.A. (1967) Direct-Sum Representations of Injective Modules. Journal of Algebra, 5, 203-221.
https://doi.org/10.1016/0021-8693(67)90035-X
[9]  Rotman, J.J. (2009) An Introduction to Homological Algebra. Springer, New York.
https://doi.org/10.1007/b98977
[10]  Eklof, P. and Trlifaj, J. (2001) How to Make Ext Vanish. Bulletin of the London Mathematical Society, 33, 31-41.
https://doi.org/10.1112/blms/33.1.41

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133