γ2(?n)空间,前对偶空间,原子分解
Qγ1γ2(?n) Space, Predual Space, Atomic Decomposition, Open Access Library" />

全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类Qp空间及其前对偶空间
A Class of Qp Spaces and Their Predual Spaces

DOI: 10.12677/PM.2021.115109, PP. 954-965

Keywords: Qγ1">γ2(?n)空间,前对偶空间,原子分解
Qγ1">γ2(?n) Space
, Predual Space, Atomic Decomposition

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究了一新Q型空间——Qγ1γ2(?n)空间。首先给出了Qγ1γ2(?n)空间的定义及若干基本性质,并定义新型帐篷空间,进而得到Qγ1γ2(?n)空间的前对偶空间及其原子分解。
In this paper, we introduce a new class of Q type spaces Qγ1γ2(?n). We first investigate definition and some basic properties of Qγ1γ2(?n), and establish a new type of tent space. Further, we obtain predual space and atomic decomposition of Qγ1γ2(?n).

References

[1]  Li, P. and Zhai, Z. (2010) Well-Posedness and Regularity of Fractional Naiver-Stokes Equations in Some Critical Q-Spaces. Journal of Functional Analysis, 259, 2457-2519.
https://doi.org/10.1016/j.jfa.2010.07.013
[2]  Ailaskari, R., Xiao, J. and Zhao, R.H. (1995) On Subspaces and Subsets of BMOA and UBC. Analysis, 15, 101-121.
https://doi.org/10.1524/anly.1995.15.2.101
[3]  Dafni, G. and Xiao, J. (2005) The Dyadic Structure and Atomic Decomposition of Q Spaces in Several Real Variables. Tohoku Mathematical Journal, 57, 119-145.
https://doi.org/10.2748/tmj/1113234836
[4]  Wu, Z. and Xie, C. (2002) Decomposition Theorems for Qp Spaces. Arkiv f?r Matematik, 40, 383-401.
https://doi.org/10.1007/BF02384542
[5]  Wu, Z. and Xie, C. (2003) Q Spaces and Morrey Spaces. Journal of Functional Analysis, 2012, 82-297.
https://doi.org/10.1016/S0022-1236(03)00020-X
[6]  Fefferman, C. and Stein, E.M. (1972) Hp Spaces of Several Variables. Acta Mathematica, 129, 137-193.
https://doi.org/10.1007/BF02392215
[7]  Esse ?n, M., Janson, S., Peng, L. and Xiao, J. (2000) Q Space of Several Real Variables. Indiana University Mathematics Journal, 49, 575-615.
https://doi.org/10.1512/iumj.2000.49.1732
[8]  Dafni, G. and Xiao, J. (2004) Some New Tent Spaces and Duality Theorem for Fractional Carleson Measures and Qα(Rn). Journal of Functional Analysis, 208, 377-422.
https://doi.org/10.1016/S0022-1236(03)00181-2
[9]  Yang, D. and Yuan, W. (2008) A New Class of Function Spaces Connecting Triebel-Lizorkin Spaces and Q Spaces. Journal of Functional Analysis, 255, 2760-2809.
https://doi.org/10.1016/j.jfa.2008.09.005
[10]  Cannone, M. (2004) Harmonic Analysis Tools for Solving the Incompressible Navier-Stokes Equations. In: Friedlander, S. and Serre, D., Eds., Handbook of Mathematical Fluid Dynamics, Vol. 3, Elsevier, Amsterdam, 161-244.
https://doi.org/10.1016/S1874-5792(05)80006-0
[11]  Chen, Q., Miao, C. and Zhang, Z. (2007) A New Bernsteins Inequality and the 2D Dissipative Quasi-Geostrophic Equation. Communications in Mathematical Physics, 271, 821-838.
https://doi.org/10.1007/s00220-007-0193-7
[12]  Koch, H. and Tataru, D. (2001) Well-Posedness for the Navier-Stokes Equations. Advances in Mathematics, 157, 22-35.
https://doi.org/10.1006/aima.2000.1937
[13]  Miao, C., Yuan, B. and Zhang, B. (2007) Well-Posedness for the Incompressible Magnetohydrodynamic System. Mathematical Methods in the Applied Science, 30, 961-976.
https://doi.org/10.1002/mma.820

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133