全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

完全图去除路P10的图谱特征
Spectral Characterization of the Complete Graph by Deleting P10

DOI: 10.12677/PM.2021.115107, PP. 937-945

Keywords: 图谱,同谱图,谱特征,路
Graph Spectrum
, Cospectral Graphs, Spectral Characterization, Path

Full-Text   Cite this paper   Add to My Lib

Abstract:

如果与图G同谱的所有图同构于图G,则称图G是由其图谱所决定的。设Kn\Pl是由完全图Kn去除图Pl的边所得到的子图,其中图Pl是长为l?1的路。Cámara和Haemers给出猜想1:对于任意的整数l(2≤l≤n),Kn\Pl可由其邻接谱所决定。本文证明在l=10的情况下猜想1是正确的。
A graph G is said to be determined by its spectrum if any graph having the same spectrum as G is isomorphic to G. Let Kn\Pl be the graph obtained from Kn by deleting edges of Pl, where Pl is a path of length l?1. Cámara and Haemers conjectured that Kn\Pl is determined by its adjacency spectrum for every (2≤l≤n). In this paper, we show that the conjecture is true for l=10.

References

[1]  Wang, W. and Xu, C.X. (2006) On the Spectral Characterization of T-Shape Trees. Linear Algebra and Its Applications, 414, 492-501.
https://doi.org/10.1016/j.laa.2005.10.031
[2]  Liu, F., Huang, Q., Wang, J. and Liu, Q. (2012) The Spectral Characterization of ∞-Graphs. Linear Algebra and Its Applications, 437, 1482-1502.
https://doi.org/10.1016/j.laa.2012.04.013
[3]  Haemers, W.H., Liu, X.G. and Zhang, Y.P. (2008) Spectral Char-acterization of Lollopop Graphs. Linear Algebra and Its Applications, 428, 2415-2423.
https://doi.org/10.1016/j.laa.2007.10.018
[4]  Ramezani, F., Broojerdian, N. and Tayfeh-Rezaie, B. (2009) A Note on the Spectral Characterization of θ-Graphs. Linear Algebra and its Applications, 431, 626-632.
https://doi.org/10.1016/j.laa.2009.03.013
[5]  Doob, M. and Haemers, W.H. (2002) The Complement of the Path Is Determined by Its Spectrum. Linear Algebra and Its Applications, 356, 57-65.
https://doi.org/10.1016/S0024-3795(02)00323-3
[6]  Dam, E.R.V. and Haemers, W.H. (2003) Which Graphs Are Determined by Their Spectrum? Linear Algebra and Its Applications, 373, 241-272.
https://doi.org/10.1016/S0024-3795(03)00483-X
[7]  Dam, E.R.V. and Haemers, W.H. (2009) Developments on Spectral Characterizations of Graphs. Discrete Mathematics, 309, 576-586.
https://doi.org/10.1016/j.disc.2008.08.019
[8]  Cámara, M. and Haemers, W.H. (2014) Spectral Characterization of almost Complete Graphs. Discrete Applied Mathematics, 176, 19-23.
https://doi.org/10.1016/j.dam.2013.08.002
[9]  Cvetkovi?, D.M., Doob, M. and Sachs, H. (1980) Spectra of Graphs. Academic Press, New York.
[10]  Mao, L.H., Cioab?, S.M. and Wang, W. (2019) Spectral Characterization of the Complete Graph Removing a Path of Small Length. Discrete Applied Mathematics, 257, 260-268.
https://doi.org/10.1016/j.dam.2018.08.029
[11]  Omidi, G.R. (2009) On a Signless Laplacian Spectral Characteri-zation of T-Shape Trees. Linear Algebra and Its Applications, 431, 1607-1615.
https://doi.org/10.1016/j.laa.2009.05.035

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133