全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进聚类与融合用户属性特征的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Improved Clustering and Fusion of User Attribute Features

DOI: 10.12677/PM.2021.115106, PP. 929-936

Keywords: K-Means聚类算法,协同过滤,最大最小距离积法,最近邻用户
K-Means Clustering Algorithm
, Collaborative Filtering, Maximum and Minimum Distance Product Method, Nearest Neighbor User

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对协同过滤算法数据稀疏导致推荐质量低和推荐效率低的问题,本文提出了一种基于改进K-means聚类与用户属性的协同过滤推荐算法。为了改进K-means算法初始中心选取的随机性,本文先用canopy算法对数据进行粗聚类,引入“最大最小距离积法”选取初始点,接着用K-means算法进行聚类,在生成多个聚类簇之后,将修正的余弦相似度与用户属性特征相结合,形成新的相似度计算模型,最后进行相应的推荐。通过MAE、RMSE两个指标的比较,结果表明,改进后的算法能够提高推荐效率和推荐准确性。
In order to solve the problem of low recommendation quality and low recommendation efficiency, which is caused by data sparseness in collaborative filtering algorithm, a collaborative filtering recommendation algorithm based on improved K-means clustering and user attribute was pro-posed in order to improve the randomness of initial center selection of K-means algorithm. In this paper, Canopy algorithm was used to perform crude clustering of data, and “maximum and mini-mum distance product method” was introduced to select initial points. Then, K-means algorithm was used for clustering. After the generation of multiple clustering clusters, the revised cosine similarity and user attribute characteristics are combined to form a new similarity calculation model. Finally, the corresponding recommendation is made. Through the comparison of MAE and RMSE, the results show that the improved algorithm can improve the efficiency and accuracy of recommendation.

References

[1]  梁丽君. 基于用户属性聚类的协同过滤推荐算法研究[D]: [硕士学位论文]. 淄博: 山东理工大学, 2018.
[2]  高祥. 基于粗糙聚类的社会化推荐算法研究[D]: [硕士学位论文]. 沈阳: 东北大学, 2016.
[3]  唐泽坤, 黄柄清, 李廉. 基于改进Canopy聚类的协同过滤推荐算法[J]. 计算机应用研究, 2020, 37(9): 2615-2619, 2639.
[4]  喻金平, 郑杰, 梅宏标. 基于改进人工蜂群算法的K均值聚类算法[J]. 计算机应用, 2014, 34(4): 1065-1069, 1088.
[5]  向小东, 邱梓咸. 基于相似度优化偏差计算的slope-one算法研究[J]. 统计与决策, 2019, 35(17): 14-18.
[6]  汪晶. 基于聚类的协同过滤推荐算法研究[D]: [硕士学位论文]. 武汉: 长江大学, 2019.
[7]  赵伟, 林楠, 韩英, 等. 一种改进的K-means聚类的协同过滤算法[J]. 安徽大学学报(自科版), 2016(40): 32-36.
[8]  Zhang, F., Gong, T., Lee, V.E., et al. (2016) Fast Algorithms to Evaluate Collaborative Filtering Recommender Systems. Knowledge-Based Systems, 96, 96-103.
https://doi.org/10.1016/j.knosys.2015.12.025
[9]  柳金山. 基于用户动态行为的协同过滤推荐算法研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133