全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effect of the Atmospheric and Cloud Properties on the Retrieval of Fog Microphysics at Night for MSG/SEVIRI: A Sensitivity Test Using LibRadtran

DOI: 10.4236/acs.2021.113026, PP. 441-457

Keywords: Fog Microphysics, MSG/SEVIRI, Sensitivity Test, LibRadtran

Full-Text   Cite this paper   Add to My Lib

Abstract:

The simplest way of building a look-up table (LUT) for the retrieval of cloud microphysical properties is to use a standard atmospheric profile and vertically uniform cloud microphysics. Such an assumption has been demonstrated to be incoherent with in-cloud observations. This paper aims to show the effect of some atmospheric conditions associated with fog as well as its macro-and microstructure on brightness temperature (BT) for the MSG/ SEVIRI satellite using libRadtran. The sensitivity tests were performed by gradually changing some features from the initial data, such as cloud cover, total water vapor column, thermal inversion intensity, fog depth, fog microstructure, and others. The results revealed that some variables can cause significant variations on BT and, consequently, discrepancies in the retrieval of fog microphysical properties. Also, a variation as high as 0.5°C was found on BT just by switching uniform to the non-uniform profile of fog microphysics depending on the channel, the droplet size, and optical thickness.

References

[1]  WMO, World Meteorological Organization (2008) Guide to Meteorological Instruments and Methods of Observation. Seventh Edition, WMO-No. 8, Geneva.
[2]  Unsworth, M.H. and Crossley, A. (1987) Consequences of Cloud Water Deposition on Vegetation at High Elevation. In: Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems, Springer, Berlin, 171-188.
https://doi.org/10.1007/978-3-642-70874-9_12
[3]  Abdel-Aty, M., Ekram, A.-A., Huang, H.L. and Choi, K. (2011) A Study on Crashes Related to Visibility Obstruction Due to Fog and Smoke. Accident Analysis & Prevention, 43, 1730-1737.
https://doi.org/10.1016/j.aap.2011.04.003
[4]  Nauss, T. and Kokhanovsky, A.A. (2011) Retrieval of Warm Cloud Optical Properties Using Simple Approximations. Remote Sensing of Environment, 115, 1317- 1325.
https://doi.org/10.1016/j.rse.2011.01.010
[5]  Kokhanovsky, A.A., Rozanov, V.V., Zege, E.P., Bovensmann, H. and Burrows, J.P. (2003) A Semi-Analytical Cloud Retrieval Algorithm Using Backscattered Radiation in 0.4-2.4 μm Spectral Region. Journal of Geophysical Research: Atmospheres, 108, AAC 4-1-AAC 4-19.
https://doi.org/10.1029/2001JD001543
[6]  Bendix, J. (1995) A Case Study on the Determination of Fog Optical Depth and Liquid Water Path Using AVHRR Data and Relations to Fog Liquid Water Content and Horizontal Visibility. International Journal of Remote Sensing, 16, 515-530.
https://doi.org/10.1080/01431169508954416
[7]  Kawamoto, K. and Nakajima, T. (2001) A Global Determination of Cloud Microphysics with AVHRR Remote Sensing. Journal of Climate, 14, 2054-2068.
https://doi.org/10.1175/1520-0442(2001)014<2054:AGDOCM>2.0.CO;2
[8]  Ellrod, G.P. (1995) Advances in the Detection and Analysis of Fog at Night Using GOES Multispectral Infrared Imagery. Weather and Forecast, 10, 606-619.
https://doi.org/10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2
[9]  Strabala, K.I., Ackerman, S.A. and Menzel, W.P. (1994) Cloud Properties Inferred from 8-12-um Data. Journal of Applied Meteorology, 33, 212-229.
https://doi.org/10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2
[10]  Merk, C., Cermak, J. and Bendix, J. (2011) Retrieval of Optical and Microphysical Cloud Properties from Meteosat SEVIRI Data at Night—A Feasibility Study Based on Radiative Transfer Calculations. Remote Sensing Letters, 2, 357-366.
https://doi.org/10.1080/01431161.2010.523023
[11]  Obregon, A., Gehrig-Downie, C., Gradstein, S.R. and Bendix, J. (2014) The Potential Distribution of Tropical Lowland Cloud Forest as Revealed by a Novel MODIS-Based Fog/Low Stratus Night-Time Detection Scheme. Remote Sensing of Environment, 155, 312-324.
https://doi.org/10.1016/j.rse.2014.09.005
[12]  Bugliaro, L., Zinner, T., Keil, C., Mayer, B., Hollmann, R., Reuter, M. and Thomas, W. (2011) Validation of Cloud Property Retrievals with Simulated Satellite Radiances: A Case Study for SEVIRI. Atmospheric Chemistry and Physics, 11, 5603- 5624.
https://doi.org/10.5194/acp-11-5603-2011
[13]  Pérez, J.C., González, A. and Armas-Padilla, M. (2011) Remote Sensing of Water Cloud Properties from MSG/SEVIRI Nighttime Imagery. Remote Sensing of Environment, 115, 738-746.
https://doi.org/10.1016/j.rse.2010.10.015
[14]  Liu, D.Y., Yang, J., Niu, S.J. and Li, Z.H. (2011) On the Evolution and Structure of a Radiation Fog Event in Nanjing. Advances in Atmospheric Sciences, 28, 223-237.
https://doi.org/10.1007/s00376-010-0017-0
[15]  Dupont, J.C., Haeffelin, M., Stolaki, S. and Elias, T. (2015) Analysis of Dynamical and Thermal Processes Driving Fog and Quasi-Fog Life Cycles Using the 2010-2013 ParisFog Dataset. Pure and Applied Geophysics, 173, 1337-1358.
https://doi.org/10.1007/s00024-015-1159-x
[16]  Egli, S., Maier, F., Bendix, J. and Thies, B. (2015) Vertical Distribution of Microphysical Properties in Radiation Fogs: A Case Study. Atmospheric Research, 151, 130-145.
https://doi.org/10.1016/j.atmosres.2014.05.027
[17]  Mayer, B. and Kylling, A. (2005) Technical Note: The libRadtran Software Package for Radiative Transfer Calculations-Description and Examples of Use. Atmospheric Chemistry and Physics, 5, 1855-1877.
https://doi.org/10.5194/acp-5-1855-2005
[18]  Stamnes, K., Tsay, S.C. and Laszlo, I. (2000) DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentations of Methodology. NASA Technical Report Version 1.1.
[19]  Stamnes, K., Tsay, S.C., Wiscombe, W. and Jayaweera, K. (1988) Numerically Stable Algorithm for Discrete-Ordinate-Method Radiative Transfer in Multiple Scattering and Emitting Layered Media. Applied Optics, 27, 2502-2509.
https://doi.org/10.1364/AO.27.002502
[20]  Gasteiger, J., Emde, C., Mayer, B., Buras, R., Buehler, S.A. and Lemke, O. (2014) Representative Wavelengths Absorption Parameterization Applied to Satellite Channels and Spectral Bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 148, 99-115.
https://doi.org/10.1016/j.jqsrt.2014.06.024
[21]  Anderson, G.P., Clough, S.A., Kneizys, F.X., Chetwynd, J.H. and Shettle, E.P. (1986). AFGL Atmospheric Constituent Profiles (0.120 km). Technical Report. Air Force Geophysics Lab Hanscom AFB MA.
[22]  Han, F., Xu, J., He, Y.J., Dang, H.Y., Yang, X.Z. and Meng, F. (2016) Vertical Structure of Foggy Haze over the BeijingeTianjineHebei Area in January 2013. Atmospheric Environment, 139, 192-204.
https://doi.org/10.1016/j.atmosenv.2016.05.030
[23]  Kong, F.Y. (2002) An Experimental Simulation of a Coastal Fog-Stratus Case Using COAMPS(TM) Model. Atmospheric Research, 64, 205-215.
https://doi.org/10.1016/S0169-8095(02)00092-3
[24]  Korolev, A.V., Isaac, G.A., Strapp, J.W., Cober, S.G. and Barker, H.W. (2007) In Situ Measurements of Liquid Water Content Profiles in Mid-Latitude Stratiform Clouds. Quarterly Journal of the Royal Meteorological Society, 133, 1693-1699.
https://doi.org/10.1002/qj.147
[25]  Bendix, J., Thies, B., Cermak, J. and Naub, T. (2005) Ground Fog Detection from Space Based on MODIS Daytime Data—A Feasibility Study. American Meteorological Society, 20, 989-1005.
https://doi.org/10.1175/WAF886.1
[26]  Bott, A., Sievers, U. and Zdunkowski, W. (1990) A Radiation Fog Model with a Detailed Treatment of the Interaction between Radiative Transfer and Fog Microphysics. Journal of the Atmospheric Sciences, 47, 2-21.
https://doi.org/10.1175/1520-0469(1990)047<2153:ARFMWA>2.0.CO;2
[27]  Zhou, B.B. and Ferrier, B.S. (2008) Asymptotic Analysis of Equilibrium in Radiation Fog. Journal of Applied Meteorology, and Climatology, 47, 1704-1722.
https://doi.org/10.1175/2007JAMC1685.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133