全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of the Influence of Parafunctional Loads on the Bone-Prosthesis System: A Non-Linear Finite Element Analysis

DOI: 10.4236/jbise.2021.146019, PP. 223-232

Keywords: Biomechanics, Analysis Non-Linear, Dental Implant, Finite Element Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study evaluates the effects of occlusal loading on an implant-supported dental implant with external hexagon dental implant-abutment systems, using the finite element method analysis. Tensile analyses were performed to simulate different axial and obliquous masticatory loads. The influence of the variations in the contouring conditions of the interfaces was analyzed to weigh the osseointegration with linear and non-linear cases, by means of a parametric design. The geometry selected to place the prostheses was a jaw section, considering the properties of the set of cortical and trabecular bones. The results show that for non-linear contour conditions, the stress presents smaller value distributions and signals a different place in the screw-implant interface as the factor of the greater weight in this study. The location indicated that von Mises stress concentrations are not exclusive to the contact regions studied, moving to an area that is not in direct contact with the non-linear contact interfaces. In addition, the direction of load with an angle of 15 degrees presented the highest values of von Mises stress.

References

[1]  Wu, T., Fan, H., Ma, R., Chen, H., Li, Z. and Yu, H. (2017) Effect of Lubricant on the Reliability of Dental Implant Abutment Screw Joint: An in Vitro Laboratory and Three-Dimension Finite Element Analysis. Materials Science and Engineering: C, 75, 297-304.
http://linkinghub.elsevier.com/retrieve/pii/S092849311630892X
https://doi.org/10.1016/j.msec.2016.11.041
[2]  Bulaqi, H.A., Mashhadi, M.M., Safari, H., Samandari, M.M., Geramipanah, F., Mousavi Mashhadi, M., et al. (2015) Effect of Increased Crown Height on Stress Distribution in Short Dental Implant Components and Their Surrounding Bone: A Finite Element Analysis. The Journal of Prosthetic Dentistry, 113, 548-557.
http://www.sciencedirect.com/science/article/pii/S0022391315000116
https://doi.org/10.1016/j.prosdent.2014.11.007
[3]  Xia, D., Lin, H., Yuan, S., Bai, W. and Zheng, G. (2014) Dynamic Fatigue Performance of Implant-Abutment Assemblies with Different Tightening Torque Values. Bio-Medical Materials and Engineering, 24, 2143-2149.
https://doi.org/10.3233/BME-141025
[4]  Khraisat, A., Hashimoto, A., Nomura, S. and Miyakawa, O. (2004) Effect of Lateral Cyclic Loading on Abutment Screw Loosening of an External Hexagon Implant System. The Journal of Prosthetic Dentistry, 91, 326-334.
http://www.sciencedirect.com/science/article/pii/S0022391304000022
https://doi.org/10.1016/j.prosdent.2004.01.001
[5]  Misch, C. (2015) Próteses sobre Implantes Dentais. Elsevier, Brasil.
[6]  Bulaqi, H.A., Mousavi Mashhadi, M., Geramipanah, F., Safari, H. and Paknejad, M. (2015) Effect of the Coefficient of Friction and Tightening Speed on the Preload Induced at the Dental Implant Complex with the Finite Element Method. The Journal of Prosthetic Dentistry, 113, 405-411.
http://www.sciencedirect.com/science/article/pii/S0022391314004806
https://doi.org/10.1016/j.prosdent.2014.09.021
[7]  de Cos Juez, F.J.J., Sánchez Lasheras, F., Garcia Nieto, P.J.J. and Alvarez-Arenal, A. (2008) Non-Linear Numerical Analysis of a Double-Threaded Titanium Alloy Dental Implant by FEM. Applied Mathematics and Computation, 206, 952-967.
http://www.sciencedirect.com/science/article/pii/S0096300308007674
https://doi.org/10.1016/j.amc.2008.10.019
[8]  Amorim Vasco, M.A.A., Doblaré Castellano, M., Bayod López, J. and Barbosa de las Casas, E. (2016) Utilização de tomografias computadorizadas de baixa resolução para construção de modelos geométricos detalhados de mandíbulas com e sem dentes. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 32, 1-6.
http://www.sciencedirect.com/science/article/pii/S0213131514000625
https://doi.org/10.1016/j.rimni.2014.09.003
[9]  Misch, C.E. (2002) The Effect of Bruxism on Treatment Planning for Dental Implants. Dentistry Today, 21, 76-81.
[10]  Wolff, J., Narra, N., Antalainen, A.K., Valásek, J., Kaiser, J., Sándor, G.K., et al. (2014) Finite Element Analysis of Bone Loss around Failing Implants. Materials & Design, 61, 177-184.
http://www.sciencedirect.com/science/article/pii/S0261306914003550
https://doi.org/10.1016/j.matdes.2014.04.080
[11]  Farina, A.P., Spazzin, A.O., Xediek Consani, R.L. and Mesquita, M.F. (2014) Screw Joint Stability after the Application of Retorque in Implant-Supported Dentures under Simulated Masticatory Conditions. Journal of Prosthetic Dentistry, 111, 499-504.
https://doi.org/10.1016/j.prosdent.2013.07.024
[12]  Kayabaşı, O., Yüzbasıoğlu, E. and Erzincanlı, F. (2006) Static, Dynamic and Fatigue Behaviors of Dental Implant Using Finite Element Method. Advances in Engineering Software, 37, 649-658.
http://www.sciencedirect.com/science/article/abs/pii/S0965997806000226
https://doi.org/10.1016/j.advengsoft.2006.02.004
[13]  Lin, D., Li, Q., Li, W. and Swain, M. (2009) Dental Implant Induced Bone Remodeling and Associated Algorithms. Journal of the Mechanical Behavior of Biomedical Materials, 2, 410-432.
http://www.sciencedirect.com/science/article/pii/S175161610800115X
https://doi.org/10.1016/j.jmbbm.2008.11.007
[14]  Macedo, J.P., Pereira, J., Faria, J., Pereira, C.A., Alves, J.L., Henriques, B., et al. (2017) Finite Element Analysis of Stress Extent at Peri-Implant Bone Surrounding External Hexagon or Morse Taper Implants. Journal of the Mechanical Behavior of Biomedical Materials, 71, 441-447.
https://doi.org/10.1016/j.jmbbm.2017.03.011
[15]  Schwitalla, A.D., Abou-Emara, M., Spintig, T., Lackmann, J., Mueller, W.D., Muller, W.D., et al. (2015) Finite Element Analysis of the Biomechanical Effects of PEEK Dental Implants on the Peri-Implant Bone. Journal of Biomechanics, 48, 1-7.
http://www.sciencedirect.com/science/article/pii/S0021929014006058
https://doi.org/10.1016/j.jbiomech.2014.11.017
[16]  Cowin, S.C. (1989) The Mechanical Properties of Cortical Bone Tissue. CRC Press, Boca Raton.
[17]  Rice, J.C., Cowin, S.C. and Bowman, J.A. (1988) On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density. Journal of Biomechanics, 21, 155-168.
https://doi.org/10.1016/0021-9290(88)90008-5
[18]  Demenko, V., Linetskiy, I., Linetska, L. and Yefremov, O. (2019) Load-Carrying Capacity of Short Implants in Edentulous Posterior Maxilla: A Finite Element Study. Medical Engineering Physics, 71, 30-37.
https://doi.org/10.1016/j.medengphy.2019.02.003
[19]  Delgado-Ruiz, R.A., Calvo-Guirado, J.L. and Romanos, G.E. (2000) Effects of Occlusal Forces on the Peri-Implant-Bone Interface Stability. Periodontology, 81, 179-193.
https://doi.org/10.1111/prd.12291
[20]  Gupta, S., Chopra, P., Goyal, P. and Jain, A. (2021) Effect of Vertical Bone Loss on Stress Distribution at the Bone-Implant Interface around Implants of Varying Diameters an in Silico 3D Finite Element Analysis Is in Press. Materials Today: Proceedings, 28, 1503-1509.
https://doi.org/10.1016/j.matpr.2021.01.008
[21]  Demenko, V., Linetskiy, I., Nesvit, K. and Shevchenko, A. (2011) Ultimate Masticatory Force as a Criterion in Implant Selection. Journal of Dental Research, 90, 1211-1215.
https://doi.org/10.1177/0022034511417442
[22]  Ali, B., Ould Chikh, E.B., Meddah, H.M., Merdji, A. and abbes Bachir Bouiadjra, B. (2013) Effects of Overloading in Mastication on the Mechanical Behaviour of Dental Implants. Materials & Design, 47, 210-217.
http://www.sciencedirect.com/science/article/pii/S0261306912008400
https://doi.org/10.1016/j.matdes.2012.12.019
[23]  Huang, H.L., Hsu, J.T., Fuh, L.J., Tu, M.G., Ko, C.C. and Shen, Y.W. (2008) Imaging Finite Element Analysis Cancellous Bone Dental Implants Reconstruction Grafts Dentistry, Oral Surgery & Medicine. Journal of Dentistry, 36, 409-417.
https://doi.org/10.1016/j.jdent.2008.02.015
[24]  Bozkaya, D., Muftu, S. and Muftu, A. (2004) Evaluation of Load Transfer Characteristics of Five Different Implants in Compact Bone at Different Load Levels by Finite Elements Analysis. The Journal of Prosthetic Dentistry, 92, 523-530.
http://www.thejpd.org/article/S0022-3913(04)00490-1/pdf
https://doi.org/10.1016/j.prosdent.2004.07.024
[25]  Shemtov-Yona, K., Rittel, D., Levin, L. and Machtei, E.E. (2014) Effect of Dental Implant Diameter on Fatigue Performance. Part I: Mechanical Behavior. Clinical Implant Dentistry and Related Research, 16, 172-177.
https://doi.org/10.1111/j.1708-8208.2012.00477.x
[26]  Shemtov-Yona, K. and Rittel, D. (2015) On the Mechanical Integrity of Retrieved Dental Implants. Journal of the Mechanical Behavior of Biomedical Materials, 49, 290-299.
http://www.sciencedirect.com/science/article/pii/S1751616115001812
https://doi.org/10.1016/j.jmbbm.2015.05.014
[27]  Mohammed, H.H., Lee, J.H., Bae, J.M. and Cho, H.W. (2016) Effect of Abutment Screw Length and Cyclic Loading on Removal Torque in External and Internal Hex Implants. The Journal of Advanced Prosthodontics, 8, 62-69.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769891
https://doi.org/10.4047/jap.2016.8.1.62

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133