全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Vitro Germination and Early Vegetative Growth of Five Tomato (Solanum lycopersicum L.) Varieties under Salt Stress Conditions

DOI: 10.4236/ajps.2021.125055, PP. 796-817

Keywords: Solanum lycopersicum, NaCl, Germination, Growth, Tolerance, In Vitro Conditions

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Senegal, tomato (Solanum lycopersicum L.) cultivation is affected by salinity in many agro-ecological zones. The selection of salt tolerant varieties would be an alternative solution to enhance the production. Thus, germination and growth are studied under axenic conditions for five varieties of tomato subjected to increasing concentrations of NaCl [0, 35, 70 and 105 mM], and supplemented in an MS/2 medium for 30 days. The results reveal that salt negatively affects the evaluated parameters. The Rodeo and Lady Nema varieties have the lowest final germination rates (50%) unlike the Mongal variety (55%). These last two varieties have a decrease of 71.78% and 81.28% in the height of the stem, respectively, in the presence of NaCl at [105 mM] while that of the Rodeo variety is 70%. The Xewel variety has the greatest average number of leaves in the presence of [NaCl 35 mM] (4.95 leaves) and [NaCl 70 mM] (4.77 leaves). The Lady Nema variety records the longest taproot length (2.99 cm) unlike the Rodeo variety (2.25 cm) at [NaCl 105 mM]. The Ganila variety reveals the highest number of secondary roots at the concentrations of [0, 35 and 105 mM] of NaCl with, respectively, 44.12, 29.25, and 4.25 roots. The Lady Nema variety records the highest fresh weight of aerial (0.055 g) and root parts (0.014 g) and the lowest root dry weights (0.0023 g). These results allow to conclude that the Lady Nema and Mongal varieties seem more tolerant,

References

[1]  Ranc, N. (2010) Analyse du polymorphisme moléculaire de gènes de composantes de la qualité des fruits dans les ressources génétiques sauvages et cultivées de tomate; recherche d’associations gènes/QTL. Thèse de doctorat, Ecole Nationale Supérieure Agronomique de Montpellier—SUPAGRO, 275 p.
[2]  Faostat (2020) Base de données de l’organisation mondiale de l’agriculture et de l’alimentation FAOSTAT sur culture de la tomate, superficie, rendement et production.
http://www.fao.org/faostat/fr/#data/QC
[3]  Lèye, M.E.H., Diouf, M., Ndiaye, F., et al. (2012) Effet de la mycorhization et de la salinité sur la croissance, les réponses biochimiques et la productivité de Jatropha curcas L., cultivée sous serre. International Journal of Biological and Chemical Sciences, 6, 1741-1760.
https://doi.org/10.4314/ijbcs.v6i4.30
[4]  Munns, R. and Tester, M. (2008) Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59, 651-681.
https://doi.org/10.1146/annurev.arplant.59.032607.092911
[5]  Qadir, M., Quillérou, E., Nangia, V., et al. (2014) Economics of Salt-Induced Land Degradation and Restoration. Natural Resources Forum, 38, 282-295.
https://doi.org/10.1111/1477-8947.12054
[6]  Yamaguchi, T. and Blumwald, E. (2005) Developing Salt-Tolerant Crop Plants: Challenges and Opportunities. Trends in Plant Science, 10, 615-620.
https://doi.org/10.1016/j.tplants.2005.10.002
[7]  FAO (2008) La situation mondiale de l’alimentation et de l’agriculture. Les biocarburants: Perspectives risques et opportinutés, 158 p.
[8]  Higazy, M.A., Shehata, M.M. and Allam, A. (1995) Free Proline Relation to Salinity Tolerance of Three Sugar Beet Varieties. Egyptian Journal of Agricultural Research, 73, 175-191.
[9]  Cramer, R.D., Patterson, D.E. and Bunce, J.D. (1988) Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins. Journal of the American Chemical Society, 110, 5959-5967.
https://doi.org/10.1021/ja00226a005
[10]  Belkhodja, M. (1996) Action de la salinité sur les teneurs en proline des organes adultes de trois lignées de fève (Vicia faba L.) au cours de leur développement. Acta Botanica Gallica, 143, 21-28.
https://doi.org/10.1080/12538078.1996.10515315
[11]  Katerji, N., Itier, B., Ferreira, I., et al. (1988) Etude de quelques critères indicateurs de l’état hydrique d’une culture de tomate en région semi-aride. Agronomie, EDP Sciences, 8, 425-433.
https://doi.org/10.1051/agro:19880508
[12]  Evangelou, V. and Mcdonald Jr., L. (1999) Influence of Sodium on Soils of Humid Regions. In: Pessarakli, M., Ed., Handbook of Plant and Crop Stress, Second Edition, CRC Press, Boca Raton, 17-50.
https://doi.org/10.1201/9780824746728.ch2
[13]  Brun, A. (1980) Effets comparés de différentes concentrations de NaCl sur la germination, la croissance et la composition minérale de quelques populations de luzernes annuelles d’Algérie. Thèse doctorat 3e cycle, USTL, Montpellier, 79 p.
[14]  Munns, R. (2005) Gene and Salt Tolerance: Bringing Them Together. New Phytologist, 167, 645-663.
https://doi.org/10.1111/j.1469-8137.2005.01487.x
[15]  Tester, M. and Davenport, R. (2003) Na+ Tolerance and Na+ Transport in Higher Plants. Annals of Botany, 91, 503-527.
https://doi.org/10.1093/aob/mcg058
[16]  Haouala, F., Ferjani, H. and El Hadj, S.B. (2007) Effet de la salinité sur la répartition des cations (Na+, K+ et Ca2+) et du chlore (Cl-) dans les parties aériennes et les racines du raygrass anglais et du chiendent. Biotechnologie, Agronomie, Société et Environnement, 11, 235-244.
[17]  Jaouadi, W., Hamrouni, L, Souayeh, N. and Larbi Khouja, M. (2010) étude de la germination des graines d’Acacia tortilis sous différentes contraintes abiotiques. Biotechnologie, Agronomie, Société et Environnement, 14, 643-652.
[18]  Doudech, N., Mhamdi, M., Bettaieb, T. and Denden, M. (2008) Tolérance à la salinité d’une graminée à gazon: Paspalum notatum Flüggé. Tropicultura, 26, 182-185.
[19]  Hichri, I., Muhovski, Y., Zizková, E., et al. (2017) The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato. Frontiers in Plant Science, 8, 1343.
https://doi.org/10.3389/fpls.2017.01343
[20]  Krishna, M., Singh, S.K., Tripathi, J.K., et al. (2019) Effect of Alder on Soil Bacteria Offers an Alternative Explanation to the Role Played by Alder in Rock Weathering. Proceedings of the National Academy of Sciences of the United States of America, 116, 19786-19788.
https://doi.org/10.1073/pnas.1910718116
[21]  Parvaiz, A. and Satyawati, S. (2008) Salt Stress and Phyto-Biochemical Responses of Plants—A Review. Plant Soil and Environment, 54, 89-99.
https://doi.org/10.17221/2774-PSE
[22]  Hasegawa, P.M., Bressan, A.B., Zhu, J.K. and Bohnert, H.J. (2000) Plant Cellular and Molecular Responses to High Salinity. Annual Review Plant Physiology and Plant Molecular Biology, 51, 463-499.
https://doi.org/10.1146/annurev.arplant.51.1.463
[23]  Denden, M., Bettaieb, T., Sahli, A. and Mathlouthi, M. (2005) Effet de la salinité sur la fluorescence chlorophyllienne, la teneur en proline et la production florale de trois espèces ornementales. Tropicultura, 23, 220-226.
[24]  Barbiero, L., Mohamedou, A.O., Laperrousaz, C., Furian, S. and Cunnac, S. (2004) Polyphasic Origin of Salinity in the Senegal Delta and Middle Valley. Catena, 58, 101-124.
https://doi.org/10.1016/j.catena.2004.03.003
[25]  Biovin, P. and Le Brusq, J.Y. (1985) Etude pédologique des Kalounayes vallées de Koubalan et Tapilane. ORSTOM/DAKAR, 76 p.
[26]  LADA (2003) FAO Land Degradation Assessment: L’évaluation de la dégradation des terres au Sénégal. Rapport préliminaire, 62 p.
[27]  Nijimbere, S. (2014) Physico-chimie de sols rizicultivés affectés par la salinité dans la basse vallée de la Rusizi au Burundi. Thése de doctorat Université catholique de Louvain, 357 p.
[28]  Sadio, S. (1991) Pédogenèse et potentialités forestières des sols sulfatés acides salés des tannes du Sine Saloum, Sénégal. Thèse de doctorat Landbouwetenschaffen, Wageningen, 290 p.
[29]  Zeng, N. (2003) Drought in the Sahel. Science, 302, 999-1000.
https://doi.org/10.1126/science.1090849
[30]  Murashige, T. and Skoog, F. (1962) A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473-497.
https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
[31]  Evenari, M. (1957) Les problèmes physiologiques de la germination. Bulletin de la Société francaise de physiologie végétale, 3, 105-124.
[32]  Come, D. (1982) Germination. In: Mazliak, P., Ed., Croissance et développement, Physiologie Végétale II, Hermann (Coll.), 129-225.
[33]  Bewley, J.D. (1997) Seed Germination and Dormancy. The Plant Cell, 9, 1225-1234.
https://doi.org/10.1105/tpc.9.7.1055
[34]  Allagui, M.B., Andreotti, V.C. and Cuartero, J. (1994) Détermination de critères de sélection pour la tolérance de la tomate à la salinité. à la germination et au stade plantule. Annales de INRAT, 67, 45-65.
[35]  Bohnert, H.J., Nelson, D.E. and Jensen, R.G. (1995) Adaptations to Environmental Stresses. Plant Cell, 7, 1099-1111.
https://doi.org/10.2307/3870060
[36]  Cuartero, J. and Fernández-Munoz, R. (1999) Tomato and Salinity. Scientia Horticulturae, 78, 83-125.
https://doi.org/10.1016/S0304-4238(98)00191-5
[37]  Arbaoui, M. (2016) Effets du stress salin sur des plantules de tomate (Solanum esculentum Mill.) cultivées sur substrat amendé en bentonique. Thèse de doctorat Université d’Oran, Algérie, 168 p.
[38]  Regragui, A. (2005) Contribution à l’étude de l’influence de la salinité sur le couple tomate-Verticillium: Conséquences physiologiques et impact sur la bioprotection des tomates contre la verticilliose. Thèse Université Mohammed V, Maroc, 231 p.
[39]  Ould Mohamdi, M., Bouya, D. and Ould Mohamed Salem, A. (2011) Etude de l’effet du stress salin (NaCl) chez deux variétés de tomate (Campbell 33 et Mongal). International Journal of Biological and Chemical Sciences, 5, 890-900.
https://doi.org/10.4314/ijbcs.v5i3.72171
[40]  Winicov, I. (1998) New Molecular Approaches to Improving Salt Tolerance in Crop Plants. Annals of Botany (Lond.), 82, 703-710.
https://doi.org/10.1006/anbo.1998.0731
[41]  Munns, R. (2002) Comparative Physiology of Salt and Water Stress. Plant, Cell and Environment, 25, 239-250.
https://doi.org/10.1046/j.0016-8025.2001.00808.x
[42]  Mauromicale, G. and Licandro, P. (2002) Salinity and Temperature on Germination, Emergence and Seedling Growth of Globe Artichoke. Agronomie, 22, 443-450.
https://doi.org/10.1051/agro:2002011
[43]  Manohar, M.S. (1966) Effect of Osmotic Systems on Germination of Peas. Planta, 71, 81-86.
https://doi.org/10.1007/BF00384644
[44]  Hegarty, T. and Ross, H. (1979) Use of Growth Regulators to Remove the Differential Sensitivity to Moisture Stress of Seed Germination and Seedling Growth in Red Clover (Trifolium pratense L.). Annals of Botany, 43, 657-660.
https://doi.org/10.1093/oxfordjournals.aob.a085677
[45]  Botia, P., Carvajal, M., Cerda, A. and Martinez, V. (1998) Response of Eight Cucumis melo Cultivars to Salinity during Germination and Early Vegetative Growth. Agronomie, 18, 503-513.
https://hal.archives-ouvertes.fr/hal-00885899
https://doi.org/10.1051/agro:19980801
[46]  Gill, P.K., Sharma, A.D., Singh, P. and Bhullar, S.S. (2003) Changes in Germination, Growth and Soluble Sugar Contents of Sorghum bicolor (L.) Moench Seeds under Various Abiotic Stresses. Plant Growth Regulation, 40, 157-162.
https://doi.org/10.1023/A:1024252222376
[47]  Viégas, R.A. and Silveira, J.A.G. (1999) Ammonia Assimilation and Proline Accumulation in Young Cashew Plants during Long Term Exposure to NACL-Salinity. Revista Brasileira de Fisiologia Vegetal, 11, 153-159.
[48]  Romero-Aranda, R., Soria, T. and Cuartero, J. (2001) Tomato Plant-Water Uptake and Plant-Water Relationships under Saline Growth Conditions. Plant Science, 160, 265-272.
https://doi.org/10.1016/S0168-9452(00)00388-5
[49]  Benmahioul, B., Daguin, F. and Kaid-Harche, M. (2009) Effet du stress salin sur la germination et la croissance in Vitro du pistachier (Pistacia vera L.). Comptes Rendus Biologies, 332, 752-758.
https://doi.org/10.1016/j.crvi.2009.03.008
[50]  Allison, L.E. (1964) Salinity in Relation to Irrigation. Advances in Agronomy, 16, 139-180.
https://doi.org/10.1016/S0065-2113(08)60023-1
[51]  Itai, C. (1999) Role of Phytohormones in Plant Responses to Stresses. In: Lerner, H.R., Ed., Plant Responses to Environmental Stress. From Phytohormones to Genome Reorganization, Marcel Dekker, New York, Basel, 287-301.
https://doi.org/10.1201/9780203743157-13
[52]  Turan, M.A., Turkmen, N. and Taban, N. (2007) Effect of NaCl on Stomatal Resistance and Proline, Chlorophyll, Na, Cl and K Concentrations of Lentil Plants. Journal of Agronomy, 6, 378-381.
https://doi.org/10.3923/ja.2007.378.381
[53]  Taffouo, V.D., Wamba, F.O., Youmbi, E., Nono, G. and Amougou, A. (2010) Growth, Yield, Water Status and Ionic Distribution Response of Three Bambara Groundnut (Vigna subterranea L.) Landraces Grown under Saline Conditions. International Journal of Botany, 6, 53-58.
https://doi.org/10.3923/ijb.2010.53.58
[54]  Schachtman, D.P. and Liu, W. (1999) Molecular Pieces to the Puzzle of the Interaction between Potassium and Sodium Uptake in Plants. Trends in Plant Science, 4, 281-287.
https://doi.org/10.1016/S1360-1385(99)01428-4
[55]  Cortes, G.V. and Saavedra Del Real, G. (2007) Some Effects of Salinity on the Tomato Cultivars and Agronomic Practices in Its Managing. Idesia, 25, 47-58.
[56]  Zraibi, L., Nabloussi, A., Merimi, J., et al. (2012) Effet du stress salin sur des paramètres physiologiques et agronomiques de différentes variétés de carthame (Carthamus tinctorius L.). Al Awamia (MA), 125-126, 15-40.
[57]  Chartzoulakis, K. and Klapaki, G. (2000) Response of Two Greenhouse Pepper Hybrids to NaCl Salinity during Different Growth Stages. Scientia Horticulturae, 86, 247-260.
https://doi.org/10.1016/S0304-4238(00)00151-5
[58]  Munns, R., Hare, R.A., James, R.A. and Rebetzke, G.J. (2000) Genetic Variation for Improving the Salt Tolerance of Durum Wheat. Australian Journal of Agricultural Research, 51, 69-74.
https://doi.org/10.1071/AR99057
[59]  Levigneron, A., Lopez, F., Vansuyt, G., et al. (1995) Les plantes face au stress salin. Cahiers Agricultures, 4, 263-273.
[60]  Ball, M.C., Chow, W.S. and Anderson, J.M. (1987) Salinity-Induced Potassium Deficiency and Cell Wall in Atriplex prostrata (Chenopodiaceae). American Journal of Botany, 84, 1247-1255.
[61]  Wang, L.W., Showalter, A.M. and Ungar, I.A. (1997) Effect of Salinity on Growth, Ion Content, and Cell Wall Chemistry in Atriplex prostrata (Chenopodiaceae). American Journal of Botany, 84, 1247-1255.
https://doi.org/10.2307/2446049
[62]  Reda Tazi, M., Berrichi, A. and Haloui, B. (2001) Germination et croissance in Vitro de l’arganier (Argania spinosa L. Skeels) des Beni-Snassen (Maroc oriental) à différentes concentrations en NaCl. Actes Institut Agronomique et Vétérinaire (Maroc), 21, 163-168.
[63]  Boudsocq, M. and Sheen, J. (2010) Calcium Sensing and Signaling. In: Pareek, A., Sopory, S.K., Bohnert, H.J. and Govindjee, Eds., Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation, Springer, Dordrecht, 75-90.
[64]  Flowers, T.J., Hajibagheri, M.A. and Yeo, A.R. (1991) Ion Accumulation in the Cell Walls of Rice Plants Growing under Saline Conditions: Evidence for the Oertli hypothesis. Plant, Cell and Environment, 14, 319-325.
https://doi.org/10.1111/j.1365-3040.1991.tb01507.x
[65]  Rubio, F., Gassmann, W. and Schroeder, J.I. (1995) Sodium-Driven Potassium Uptake by the Plant Potassium Transporter HKT1 and Mutations Conferring Salt Tolerance. Science, 270, 1660-1663.
https://doi.org/10.1126/science.270.5242.1660
[66]  Bhandal, I.S. and Malik, C.P. (1988) Potassium Estimation, Uptake, and Its Role in the Physiology and Metabolism of Flowering Plant. International Review of Cytology, 110, 205-254.
https://doi.org/10.1016/S0074-7696(08)61851-3
[67]  Hagemeyer, J. (1996) Salt. In: Plant Ecophysiology, John Wiley & Sons Inc., New York, 176-181.
[68]  Glenn, E., Brown, J. and O’Leary, J. (1998) Irrigating Crops with Seawater. Scientific American, 279, 76-81. http://www.jstor.org/stable/2607060
https://doi.org/10.1038/scientificamerican0898-76
[69]  Andaloussi, M.Z. (1999) Comportement physiologique et biochimique du Sorgho fourrager sous contrainte saline. Effets d’alternance et acclimatation. Thèse de doctorat Université de Tunis (Tunisie).
[70]  Greenway, H. and Munns, R. (1980) Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31, 149-190.
https://doi.org/10.1146/annurev.pp.31.060180.001053
[71]  Zhu, J.-K. (2001) Plant Salt Tolerance. Trends in Plant Science, 6, 66-71.
https://doi.org/10.1016/S1360-1385(00)01838-0
[72]  Garbarino, J. and DuPont, F.M. (1989) Rapid Induction of Na+/H+ Exchange Activity in Barley Root Tonoplast. Plant Physiology, 89, 1-4.
https://doi.org/10.1104/pp.89.1.1
[73]  Wilson, C. and Shannon, M.C. (1995) Salt-Induced Na+H+ Antiport in Root Plasma Membrane of a Glycophytic and Halophytic Species of Tomato. Plant Science, 107, 147-157.
https://doi.org/10.1016/0168-9452(95)04105-4
[74]  Ballesteros, E., Blumwald, E., Donaire, J.P. and Belver, A. (1997) Na+/H+ Antiport Activity in Tonoplast Vesicles Isolated from Sunflower Roots Induced by NaCl Stress. Physiologia Plantarum, 99, 328-334.
https://doi.org/10.1111/j.1399-3054.1997.tb05420.x
[75]  Apse, M.P., Aharon, G.S., Snedden, W.A. and Blumwald, E. (1999) Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis. Science, 285, 1256-1258.
https://doi.org/10.1126/science.285.5431.1256
[76]  Zhang, H.X. and Blumwald, E. (2001) Transgenic Salt-Tolerant Tomato Plants Accumulate Salt in Foliage But Not in Fruit. Nature Biotechnology, 19, 765-768.
https://doi.org/10.1038/90824
[77]  Chen, Y.L. and Li, Q.Z. (2007) Prediction of Apoptosis Protein Subcellular Location Using Improved Hybrid Approach and Pseudo-Amino Acid Composition. Journal of Theoretical Biology, 248, 377-381.
https://doi.org/10.1016/j.jtbi.2007.05.019
[78]  Yokoi, S., Quintero, F.J., Cubero, B., et al. (2002) Differential Expression and Function of Arabidopsis thaliana NHX Na+/H+ Antiporters in the Salt Stress Response. The Plant Journal, 30, 529-539.
https://doi.org/10.1046/j.1365-313X.2002.01309.x
[79]  Bonhert, H.J. and Jensen, R.G. (1996) Metabolic Engineering for Increased Salt Tolerance—The Next Step. Australian Journal of Plant Physiology, 23, 661-667.
https://doi.org/10.1071/PP9960661

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133