A redshift in the wavelength of excitation spectra is experimentally
measured as a function of the concentration parameter for tryptophan solutions
in water. To understand the microscopic causes of this behavior, theoretical
calculations obtained from four model clusters are carried out: (Trp)1- (H2O)9, (Trp)2- (H2O)18, (Trp)3- (H
References
[1]
Callis, P.R. (1997) 1La and 1Lb Transitions of Tryptophan: Applications of Theory and Experimental Observations to Fluorescence of Proteins. Methods in Enzymology, 278, 113-150. https://doi.org/10.1016/S0076-6879(97)78009-1
[2]
Daizadeh, I., Medvedev, E.S. and Stucherbrukhov, A.A. (1997) Effect of Protein Dynamics on Biological Electron Transfer. Proceedings of the National Academy of Sciences of the United States of America, 94, 3703-3708. https://doi.org/10.1073/pnas.94.8.3703
[3]
Wetlaufer, D.B. (1963) Ultraviolet Spectra of Proteins and Amino Acids. Advances in Protein Chemistry, 17, 303-390. https://doi.org/10.1016/S0065-3233(08)60056-X
[4]
Lacowicz, J.R. (2006) Principles of Fluorescence Spectroscopy. Springer, New York.
[5]
Gryczynski, I., Wick, W., Johnson, M.L. and Lakowicz, J.R. (1998) Lifetime Distributions and Anisotropy Decays of Indole Fluorescence in Cyclohexane/Ethanol Mixtures by Frequency-Domain Fluorometry. Biophysical Chemistry, 32, 173-185. https://doi.org/10.1016/0301-4622(88)87005-4
[6]
Snoek, L.C., Kroemer, R.T., Hockridge, M.R. and Simons, J.P. (2001) Conformational Landscapes of Aromatic Amino Acids in the Gas Phase: Infrared and Ultraviolet Ion Dip Spectroscopy of Tryptophan. Physical Chemistry Chemical Physics, 3, 1819-1826. https://doi.org/10.1039/b101296g
[7]
Snoek, L.C., Kroemer, R.T. and Simons, J.P. (2002) A Spectroscopic and Computational Exploration of Tryptophan-Water Cluster Structures in the Gas Phase. Physical Chemistry Chemical Physics, 4, 2130-2139. https://doi.org/10.1039/b200059h
[8]
Nolting, D., Marian, C. and Weinkauf, R. (2002) Protonation Effect on the Electronic Spectrum of Tryptophan in the Gas Phase. Physical Chemistry Chemical Physics, 6, 2633-2640. https://doi.org/10.1039/b316669d
[9]
Gindensperger, E., Haegy, A., Daniel, C. and Marquardt, R. (2010) Ab Initio Study of the Electronic Singlet Excited-State Properties of Tryptophan in the Gas Phase: The Role of Alanyl Side-Chain Conformations. Chemical Physics, 374, 104-110. https://doi.org/10.1016/j.chemphys.2010.07.004
[10]
Sobolewski, A.L., Shemesh, D. and Domcke, W. (2009) Computational Studies of the Photophysics of Neutral and Zwitterionic Amino Acids in an Aqueous Environment: Tyrosine-(H2O)2 and Tryptophan-(H2O)2 Clusters. The Journal of Physical Chemistry A, 113, 542-550. https://doi.org/10.1021/jp8091754
[11]
Hurtado, J.M., Menéndez, M.I., Lopez, R. and Lopez, M.F.R. (2014) An ab Initio Analysis of the Structure of L-Tryptophan Tautomers in Microhydrated Environments, in Water and in Hydrophobic Solvents. Computational and Theoretical Chemistry, 1034, 17-25. https://doi.org/10.1016/j.comptc.2014.02.014
[12]
Blom, M.N., Compagnon, I., Polfer, N.C., Helden, V.G., Meijer, G., Suhai, S., Paizd, B. and Oomens, J. (2007) Stepwise Solvation of an Amino Acid: The Appearance of Zwitterionic Structures. The Journal of Physical Chemistry A, 111, 7309-7316. https://doi.org/10.1021/jp070211r
[13]
Liu, H., Zhang, H. and Jin, B. (2007) Fluorescence of Tryptophan in Aqueous Solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 106, 54-59. https://doi.org/10.1016/j.saa.2012.12.065
[14]
Martinez, E.V. and Labbé, A.T. (2010) The Role of Water in the Proton Transfer Reaction Mechanism in Tryptophan. Journal of Computational Chemistry, 31, 2642-2649. https://doi.org/10.1002/jcc.21559
[15]
Jensen, J.H. and Gordon, M.S. (1995) On the Number of Water Molecules Necessary to Stabilize the Glycine Zwitterion. Journal of the American Chemical Society, 117, 8159-8170. https://doi.org/10.1021/ja00136a013
[16]
Ghassemizadeh, R., Moore, B., Momose, T. and Walter, M. (2019) Stability and IR Spectroscopy of Zwitterionic Form of β-Alanine in Water Clusters. The Journal of Physical Chemistry B, 123, 4392-4399. https://doi.org/10.1021/acs.jpcb.9b00654
[17]
Leyton, P., Brunet, J., Silva, V., Paipa, C., Castillo, M.V. and Brandán, S A. (2012) An Experimental and Theoretical Study of L-Tryptophan in an Aqueous Solution, Combining Two-Layered ONIOM and SCRF Calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 88, 162-170. https://doi.org/10.1016/j.saa.2011.12.023
[18]
Huang, Z. and Lin, Z. (2005) Detailed Ab Initio Studies of the Conformers and Conformational Distributions of Gaseous Tryptophan. The Journal of Physical Chemistry A, 109, 2656-2659. https://doi.org/10.1021/jp0461201
[19]
Compagnon, I., Hagemeister, F.C., Antoine, R., Rayane, D., Broyer, M., Dugourd, P., Hudgins, R.R. and Jarrold, M.F. (2001) Permanent Electric Dipole and Conformation of Unsolvated Tryptophan. Journal of the American Chemical Society, 123, 8440-8441. https://doi.org/10.1021/ja010965y
[20]
Dezube, B., Dobson, C.M. and Teague, C.E. (1981) Conformational Analysis of Tryptophan in Solution using Nuclear Magnetic Resonance Methods. Journal of the Chemical Society, Perkin Transactions 2, 4, 730-735. https://doi.org/10.1039/p29810000730
[21]
Eriksen, J.J., Olsen, J.M.H., Aidas, K., Agren, H., Mikkelsen, K.V. and Kongsted, J. (2011) Computational Protocols for Prediction of Solute NMR Relative Chemical Shifts. A Case Study of L-Tryptophan in Aqueous Solution. Journal of Computational Chemistry, 32, 2853-2864. https://doi.org/10.1002/jcc.21867
[22]
Mark, P. and Nilsson, L. (2002) A Molecular Dynamic Study of Tryptophan in Water. The Journal of Physical Chemistry B, 106, 9440-9445. https://doi.org/10.1021/jp025965e
[23]
Platt, J.R. (1949) Classification of Spectra of Cata-Condensed Hydrocarbons. The Journal of Chemical Physics, 17, 484-495. https://doi.org/10.1063/1.1747293
[24]
Yamamoto, Y. and Tanaka, J. (1972) Polarized Absorption Spectra of Crystals of Indole and Its Related Compounds. Bulletin of the Chemical Society of Japan, 45, 1362-1366. https://doi.org/10.1246/bcsj.45.1362
[25]
Valeur, B. and Weber, G. (1977) Resolution of the Fluorescence Excitation Spectrum of Indole into the 1La, and 1Lb Excitation Bands. Photochemistry and Photobiology, 25, 441-444. https://doi.org/10.1111/j.1751-1097.1977.tb09168.x
[26]
Teale, F.W.J. and Weber, G. (1957) Ultraviolet Fluorescence of the Aromatic Amino Acids. Biochemical Journal, 65, 476-482. https://doi.org/10.1042/bj0650476
[27]
Weber, G. (1960) Fluorescence-Polarization Spectrum and Electronic-Energy Transfer in Tyrosine, Tryptophan and Related Compounds. Biochemical Journal, 75, 335-345. https://doi.org/10.1042/bj0750335
[28]
Sun, M. and Song, P.-S. (1977) Solvent Effects on the Fluorescent States of Indole Derivatives-Dipole Moments. Photochemistry and Photobiology, 25, 3-9. https://doi.org/10.1111/j.1751-1097.1977.tb07416.x
[29]
Tatisheff, L., Klein, R., Zemb, T. and Duquesne, M. (1978) Solvent Interactions with the Indole Chromophore. Chemical Physics Letters, 54, 394-398. https://doi.org/10.1016/0009-2614(78)80127-4
[30]
Eftink, M.R., Selvidge, L.A., Callis, P.R. and Rehms, A.A. (1990) Photophysics of Indole Derivatives: Experimental Resolution of La and Lb Transitions and Comparison with Theory. The Journal of Physical Chemistry, 94, 3469-3479. https://doi.org/10.1021/j100372a022
[31]
Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E and Wuthrich, K. (1990) Recommendations for the Presentation of NMR Structures of Proteins and Nucleic Acids. Journal of Molecular Biology, 280, 933-952. https://doi.org/10.1006/jmbi.1998.1852
[32]
Lewars, E.G. (2003) Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Springer, Peterborough.
[33]
Engler, E.M., Andose, J.D. and Schleyer, P.V.R. (1973) Critical Evaluation of Molecular Mechanics. Journal of the American Chemical Society, 95, 8005-8025. https://doi.org/10.1021/ja00805a012
[34]
Formosinho, S.J., Csizmadia, I.G. and Arnaut, L.G. (1991) Theoretical and Computational Models for Organic Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3584-9
[35]
Mayo, S.L., Olafson, B.D. and Goddard III, W.A. (1990) DREIDING: A Generic Force Field for Molecular Simulations. The Journal of Physical Chemistry, 94, 8897-8909. https://doi.org/10.1021/j100389a010
[36]
Stewart, J.J.P. (2007) Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. Journal of Molecular Modeling, 13, 1173-1213. https://doi.org/10.1007/s00894-007-0233-4
[37]
Bauernschmitt, R. and Ahlrichs, R. (1996) Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory. Chemical Physics Letters, 256, 454-464. https://doi.org/10.1016/0009-2614(96)00440-X
[38]
Stratmann, R.E. and Scuseria, G.E. (1998) An Efficient Implementation of Time-Dependent Density-Functional Theory for the Calculation of Excitation Energies of Large Molecules. The Journal of Chemical Physics, 109, 8218-8224. https://doi.org/10.1063/1.477483
[39]
Van Caillie, C. and Amos, R.D. (1999) Geometric Derivatives of Excitation Energies Using SCF and DFT. Chemical Physics Letters, 308, 249-255. https://doi.org/10.1016/S0009-2614(99)00646-6
[40]
Van Caillie, C. and Amos, R.D. (2000) Geometric Derivatives of Density Functional Theory Excitation Energies Using Gradient-Corrected Functionals. Chemical Physics Letters, 317, 159-164. https://doi.org/10.1016/S0009-2614(99)01346-9
[41]
Furche, F. and Ahlrichs, R. (2002) Adiabatic Time-Dependent Density Functional Methods for Excited State Properties. The Journal of Chemical Physics, 117, 7433-7447. https://doi.org/10.1063/1.1508368
[42]
Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R. and Barone, V. (2006) Geometries and Properties of Excited States in the Gas Phase and in Solution: Theory and Application of a Time-Dependent Density Functional Theory Polarizable Continuum Model. The Journal of Chemical Physics, 124, 094107. https://doi.org/10.1063/1.2173258
[43]
Adamo, C. and Jacquemin, D. (2013) The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory. Chemical Society Reviews, 42, 845-856. https://doi.org/10.1039/C2CS35394F
[44]
Laurent, A.D., Adamo, C. and Jacquemin, D. (2014) Dye Chemistry with Time-Dependent Density Functional Theory. Physical Chemistry Chemical Physics, 16, 14334-14356. https://doi.org/10.1039/C3CP55336A
[45]
Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98, 5648-5652. https://doi.org/10.1063/1.464913
[46]
Wachters, A.J.H. (1970) Gaussian Basis Set for Molecular Wave Functions Containing Third Row Atoms. The Journal of Chemical Physics, 52, 1033-1036. https://doi.org/10.1063/1.1673095
[47]
Hay, P.J. (1977) Gaussian Basis Sets for Molecular Calculations. The Representation of 3d Orbitals in Transitionmetal Atoms. The Journal of Chemical Physics, 66, 4377-4384. https://doi.org/10.1063/1.433731
[48]
Ditchfield, R., Hehre, W.J. and Pople, J.A. (1971) Self-Consistent Molecular Orbital Methods. 9. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54, 724-728. https://doi.org/10.1063/1.1674902
[49]
Hariharan, P.C. and Pople, J.A. (1973) Influence of Polarization Functions on Molecular-Orbital Hydrogenation Energies. Theoretica Chimica Acta, 28, 213-222. https://doi.org/10.1007/BF00533485
[50]
Rassolov, V.A., Ratner, M.A., Pople, J.A., Redfern, P.C. and Curtiss, L.A. (2001) 6-31G* Basis Set for Third-Row Atoms. Journal of Computational Chemistry, 22, 976-984. https://doi.org/10.1002/jcc.1058
[51]
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G.,Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J.; Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J.B. and Fox, D.J. (2016) Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford.