全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chiral Recognition of Dansyl Derivatives with an Amino Acid-Based Molecular Micelle: A Molecular Dynamics Investigation

DOI: 10.4236/ojpc.2021.112004, PP. 64-86

Keywords: Amino Acid Based Molecular Micelles, Molecular Modeling, Computational Chemistry, Chiral Recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the chiral separation mechanisms of Dansyl amino acids, including Dansyl-Leucine (Dans-Leu), Dansyl-Norleucine (Dans-Nor), Dansyl-Tryptophan (Dans-Trp) and Dansyl-Phenylalanine (Dans-Phe) binding to poly-sodium N-undecanoyl-(L)-Leucylvalinate, poly (SULV), were investigated using molecular dynamics simulations. Micellar electrokinetic chromatography (MEKC) has previously shown that when separating the enantiomers of these aforementioned Dansyl amino acids, the L-enantiomers bind stronger to poly (SULV) than the D-enantiomers. This study aims to investigate the molecular interactions that govern chiral recognition in these systems using computational methods. This study reveals that the computationally-calculated binding free energy values for Dansyl enantiomers binding to poly (SULV) are in agreement with the enantiomeric order produced in experimental MEKC studies. The L-enantiomers of Dans-Leu, Dans-Nor, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly (SULV) yielded binding free energy values of -21.8938, -22.1763, -21.3329 and -13.3349 kJ·mol-1, respectively. The D-enantiomers of Dans-Leu, Dans-Nor, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly (SULV) yielded binding free energy values of -14.5811, -15.9457, -13.6408, and -

References

[1]  Nguyen, L.A., He, H. and Pham-Huy, C. (2006) Chiral Drugs: An Overview. International Journal of Biomedical Science, 2, 85-100.
[2]  Ananthi, N. (2018) Role of Chirality in Drugs. Organic & Medicinal Chemistry International Journal, 5, 1.
https://doi.org/10.19080/OMCIJ.2018.05.555661
[3]  Stolarska, M., Bocian, W., Sitkowski, J., Naumczuk, B., Bednarek, E., Poplawska, M., Blazewicz, A. and Kozerski, L. (2020) Cathinones-Routine NMR Methodology for Enantiomer Discrimination and Their Absolute Stereochemistry Assignment, Using R-BINOL. Journal of Molecular Structure, 1219, Article ID: 128575.
https://doi.org/10.1016/j.molstruc.2020.128575
[4]  Chhabra, N., Aseri, M. and Padmanabhan, D. (2013) A Review of Drug Isomerism and Its Significance. International Journal of Applied and Basic Medical Research, 3, 16-18.
https://doi.org/10.4103/2229-516X.112233
[5]  Morris, K.F., Billiot, E.J., Billiot, F.H., Ingle, J.A., Krause, K.B., Lewis, C.R., Lipkowitz, K.B., Southerland, W.M. and Fang, Y. (2019) Using Molecular Dynamics Simulations to Identify the Key Factors Responsible for Chiral Recognition by an Amino Acid-Based Molecular Micelle. Journal of Dispersion Science and Technology, 40, 716-727.
https://doi.org/10.1080/01932691.2018.1479267
[6]  Can Baser, K.H. and Ozek, T. (2012) Chapter 22 Analysis of Essential Oils and Fragrances by Gas Chromatography. In: Poole, C.F., Ed., Gas Chromatography, Elsevier, Amsterdam, 519-527.
https://doi.org/10.1016/B978-0-12-385540-4.00022-5
[7]  Yu, R.B. and Quirino, J.P. (2019) Chiral Selectors in Capillary Electrophoresis: Trends during 2017-2018. Molecules, 24, 1135.
https://doi.org/10.3390/molecules24061135
[8]  Ramos, Z., Rothbauer, G.A., Turner, J., Lewis, C., Morris, K., Billiot, E., Billiot, F. and Fang, Y. (2019) Comparison of Chiral Recognition of Binaphthyl Derivatives with l-Undecyl-Leucine Surfactants in the Presence of Arginine and Sodium Counterions. Journal of Chromatographic Science, 57, 54-62.
https://doi.org/10.1093/chromsci/bmy080
[9]  Engelhardt, H. and Cunat-Walter, M.A. (1995) Use of Plate Numbers Achieved in Capillary Electrophoretic Protein Separations for Characterization of Capillary Coatings. Journal of Chromatography A, 717, 15-23.
https://doi.org/10.1016/0021-9673(95)00485-7
[10]  Billiot, E., Macossay, J., Thibodeaux, S., Shamsi, S.A. and Warner, I.M. (1998) Chiral Separations Using Dipeptide Polymerized Surfactants: Effect of Amino Acid Order. Analytical Chemistry, 70, 1375-1381.
https://doi.org/10.1021/ac9709561
[11]  Malviya, R., Bansal, V., Pal, O. and Sharma, P. (2010) High Performance Liquid Chromatography: A Short Review. Journal of Global Pharma Technology, 2, 22-26.
[12]  Escuder-Gilabert, L., Martín-Biosca, Y., Medina-Hernández, M.J. and Sagrado, S. (2014) Cyclodextrins in Capillary Electrophoresis: Recent Developments and New Trends. Journal of Chromatography A, 1357, 2-23.
https://doi.org/10.1016/j.chroma.2014.05.074
[13]  Mantovani, V., Galeotti, F., Maccari, F. and Volpi, N. (2018) Recent Advances in Capillary Electrophoresis Separation of Monosaccharides, Oligosaccharides, and Polysaccharides. Electrophoresis, 39, 179-189.
https://doi.org/10.1002/elps.201700290
[14]  Shamsi, S.A., Valle, B.C., Billiot, F. and Warner, I.M. (2003) Polysodium N-Undecanoyl-l-leucylvalinate: A Versatile Chiral Selector for Micellar Electrokinetic Chromatography. Analytical Chemistry, 75, 379-387.
https://doi.org/10.1021/ac020386r
[15]  Billiot, F.H., Billiot, E.J. and Warner, I.M. (2001) Comparison of Monomeric and Polymeric Amino Acid Based Surfactants for Chiral Separations. Journal of Chromatography A, 922, 329-338.
https://doi.org/10.1016/S0021-9673(01)00865-2
[16]  Bordes, R. and Holmberg, K. (2015) Amino Acid-Based Surfactants—Do They Deserve More Attention? Advances in Colloid and Interface Science, 222, 79-91.
https://doi.org/10.1016/j.cis.2014.10.013
[17]  Billiot, A., Fang, Y. and Morris, K. (2019) Characterization of Amino Acid Based Molecular Micelles with Molecular Modeling. Open Journal of Physical Chemistry, 9, 221-240.
https://doi.org/10.4236/ojpc.2019.94014
[18]  Morris, K.F., Billiot, E.J., Billiot, F.H., Gladis, A.A., Lipkowitz, K.B., Southerland, W.M. and Fang, Y. (2014) A Molecular Dynamics Simulation Study of the Association of 1,1’-Binaphthyl-2,2’-diyl Hydrogenphosphate Enantiomers with a Chiral Molecular Micelle. Chemical Physics, 439, 36-43.
https://doi.org/10.1016/j.chemphys.2014.05.004
[19]  Morris, K.F., Billiot, E.J., Billiot, F.H., Hoffman, C.B., Gladis, A.A., Lipkowitz, K.B., Southerland, W.M. and Fang, Y. (2015) Molecular Dynamics Simulation and NMR Investigation of the Association of the β-Blockers Atenolol and Propranolol with a Chiral Molecular Micelle. Chemical Physics, 457, 133-146.
https://doi.org/10.1016/j.chemphys.2015.05.024
[20]  Lipkowitz, K.B. (2006) Chapter 5 Analysis of Chiral Chromatographic Separations by Molecular Modeling. In: Busch, K.W. and Busch, M.A., Eds., Chiral Analysis, Elsevier, Amsterdam, 97-129.
https://doi.org/10.1016/B978-044451669-5/50005-3
[21]  Montanari, C.A., Cass, Q.B., Tiritan, M.E. and Souza, A.L.S. (2000) A QSERR Study on Enantioselective Separation of Enantiomeric Sulphoxides. Analytica Chimica Acta, 419, 93-100.
https://doi.org/10.1016/S0003-2670(00)00962-4
[22]  Valle, B.C., Morris, K.F., Fletcher, K.A., Fernand, V., Sword, D.M., Eldridge, S., Larive, C.K. and Warner, I.M. (2007) Understanding Chiral Molecular Micellar Separations Using Steady-State Fluorescence Anisotropy, Capillary Electrophoresis, and NMR. Langmuir, 23, 425-435.
https://doi.org/10.1021/la0612623
[23]  Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B. and Woods, R.J. (2005) The Amber Biomolecular Simulation Programs. Journal of Computational Chemistry, 26, 1668-1688.
https://doi.org/10.1002/jcc.20290
[24]  Billiot, F.H., McCarroll, M., Billiot, E.J., Rugutt, J.K., Morris, K. and Warner, I.M. (2002) Comparison of the Aggregation Behavior of 15 Polymeric and Monomeric Dipeptide Surfactants in Aqueous Solution. Langmuir, 18, 2993-2997.
https://doi.org/10.1021/la0110592
[25]  Roe, D.R. and Cheatham, T.E. (2013) PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation, 9, 3084-3095.
https://doi.org/10.1021/ct400341p
[26]  Maiorov, V.N. and Crippen, G.M. (1994) Significance of Root-Mean-Square Deviation in Comparing Three-Dimensional Structures of Globular Proteins. Journal of Molecular Biology, 235, 625-634.
https://doi.org/10.1006/jmbi.1994.1017
[27]  Morris, K.F., Billiot, E.J., Billiot, F.H., Lipkowitz, K.B., Southerland, W.M. and Fang, Y. (2013) A Molecular Dynamics Simulation Study of Two Dipeptide Based Molecular Micelles: Effect of Amino Acid Order. Open Journal of Physical Chemistry, 3, 20-29.
https://doi.org/10.4236/ojpc.2013.31004
[28]  Vilar, S., Cozza, G. and Moro, S. (2008) Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Current Topics in Medicinal Chemistry, 8, 1555-1572.
https://doi.org/10.2174/156802608786786624
[29]  Galli, C.L., Sensi, C., Fumagalli, A., Parravicini, C., Marinovich, M. and Eberini, I. (2014) A Computational Approach to Evaluate the Androgenic Affinity of Iprodione, Procymidone, Vinclozolin and Their Metabolites. PLoS ONE, 9, e104822.
https://doi.org/10.1371/journal.pone.0104822
[30]  Le Guilloux, V., Schmidtke, P. and Tuffery, P. (2009) Fpocket: An Open Source Platform for Ligand Pocket Detection. BMC Bioinformatics, 10, 168.
https://doi.org/10.1186/1471-2105-10-168
[31]  Cuzzolin, A., Sturlese, M., Malvacio, I., Ciancetta, A. and Moro, S. (2015) DockBench: An Integrated Informatic Platform Bridging the Gap between the Robust Validation of Docking Protocols and Virtual Screening Simulations. Molecules, 20, 9977-9993.
https://doi.org/10.3390/molecules20069977
[32]  Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A. and Case, D.A. (2004) Development and Testing of a General Amber Force Field. Journal of Computational Chemistry, 25, 1157-1174.
https://doi.org/10.1002/jcc.20035
[33]  Tian, C., Kasavajhala, K., Belfon, K.A.A., Raguette, L., Huang, H., Migues, A.N., Bickel, J., Wang, Y., Pincay, J., Wu, Q. and Simmerling, C. (2020) ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. Journal of Chemical Theory and Computation, 16, 528-552.
https://doi.org/10.1021/acs.jctc.9b00591
[34]  Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J.Z.H. and Hou, T. (2019) End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chemical Reviews, 119, 9478-9508.
https://doi.org/10.1021/acs.chemrev.9b00055
[35]  Ylilauri, M. and Pentikainen, O.T. (2013) MMGBSA as a Tool to Understand the Binding Affinities of Filamin-Peptide Interactions. Journal of Chemical Information and Modeling, 53, 2626-2633.
https://doi.org/10.1021/ci4002475
[36]  Chanda, J. and Bandyopadhyay, S. (2006) Hydrogen Bond Lifetime Dynamics at the Interface of a Surfactant Monolayer. The Journal of Physical Chemistry B, 110, 23443-23449.
https://doi.org/10.1021/jp065203+

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133