全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Shared Hyperplanes and Normal Families of Holomorphic Curves

DOI: 10.4236/ajcm.2021.112008, PP. 83-93

Keywords: Hyperplane, Normal Family, Holomorphic Curve, Hyperplanes of Share

Full-Text   Cite this paper   Add to My Lib

Abstract:

In theorem LP [1], Liu proves the theorem when N = 2, but it can’t be ex-tended to the general case in his proof. So we consider the condition that the families of holomorphic curves share eleven hyperplanes, and we get the theorem 1.1.

References

[1]  Liu, X.J. and Pang, X.C. (2020) Shared Hyperplanes and Normal Families of Holomorphic Curves. International Journal of Mathematics, 31, Article ID: 2050037.
https://doi.org/10.1142/S0129167X20500378
[2]  Zalcman, L. (1975) A Heuritic Principle in Complex Function Theory. The American Mathematical Monthly, 82, 813-817.
https://doi.org/10.1080/00029890.1975.11993942
[3]  Zalcman, L. (1998) Normal Families: New Perspectives. Bulletin of the American Mathematical Society, 35, 215-230.
https://doi.org/10.1090/S0273-0979-98-00755-1
[4]  Chen, Z.H. and Yan, Q.M. (2009) Uniqueness Theorem of Meromorphic Mappings into PN (C) Sharing 2N+3 Hyperplanes Regardless of Multiplicities. International Journal of Mathematics, 20, 717-726.
https://doi.org/10.1142/S0129167X09005492
[5]  Yang, L., Fang, C.Y. and Pang, X.C. (2014) Normal Families of Holomorphic Mappings into Complex Projective Space Concerning Shared Hyperplanes. Pacific Journal of Mathematics, 272, 245-256.
https://doi.org/10.2140/pjm.2014.272.245
[6]  Liu, X.J., Pang, X.C. and Yang, J.H. (2017) A Criterion of Normality Concerning Shared Hyperplanes. Chin. Chinese Annals of Mathematics, Series B, 38, 1-6.
[7]  Ye, Y.S. Yang, L. and Pang, X.C. (2015) An Extension of Schwick’s Theorem for Normal Families. Annales Polonici Mathematici, 115, 23-31.
https://doi.org/10.4064/ap115-1-2
[8]  Aladroand, G. and Krantz, S.G. (1991) A Criterion for Normality in Cn. Journal of Mathematical Analysis and Applications, 161, 1-8.
https://doi.org/10.1016/0022-247X(91)90356-5
[9]  Ru, M. (2001) Nevanlinna Theory and Its Relation to Diophantine Approximation. World Scientific, Singapore.
https://doi.org/10.1142/4508
[10]  Yang, L. (1993) Value Distribution Theory. Springer-Verlag, Berlin.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133