The design of optical instruments is an active subject due to improvement
in lens techniques, fabrication technology, and data handling capacity. Much
remains to do to expand its application to phytopathology, which would be in
particular quite useful to improve crop growth monitoring in countries like
Mali. An optical multimodal system for plant samples has been developed to
improve the characterization of leaf disease symptoms, provide information on
their effects, and avoid their spread. Potentially inexpensive components
(laser, lens, turntables camera and sample, filter, lens, camera and computer)
have been selected, assembled and aligned on an optical table into a multimodal
system operating in transmission, reflection, diffusion and fluorescence. The illumination
and observation angles can be adjusted to optimize viewing conditions in the
four modes. This scientific contribution has been an initiation into the design
and implementation of an optical instrument. Initial results are shown and will
now be extended in cooperation with agronomic laboratories in African countries
for tests on specific plant diseases in relation with prevailing climate
conditions.
References
[1]
Brydegaard, M., Guan, Z. and Svanberg, S. (2009) Broad-Band Multispectral Microscope for Imaging Transmission Spectroscopy Employing an Array of Light-Emitting Diodes. American Journal of Physics, 77, 104-110. https://doi.org/10.1119/1.3027270
[2]
Brydegaard, M., Merdasa, A., Jayaweera, H., Alebring, J. and Svanberg, S. (2011) Versatile Multispectral Microscope Based on Light Emitting Diodes. Review of Scientific Instruments, 82, Article ID: 123106. https://doi.org/10.1063/1.3660810
[3]
Zoueu, J.T., Ouattara, S., Toure, A. and Zan, S.T. (2009) Spectroscopic Approach of Multispectral Imaging of Plasmodium falciparum Infected Human Erythrocytes. IEEE Proceedings, ICTON Mediterranean Winter Conference, Vol. 23, 1-7. https://doi.org/10.1109/ICTONMW.2009.5385598
[4]
Merdasa, A.J., Brydegaard, M., Svanberg, S. and Zoueu, J.T. (2013) Staining-Free Malaria Diagnostics by Multispectral and Multimodality Light-Emitting-Diode Microscopy. Journal of Biomedical Optics, Vol.18 (03): 036002. https://doi.org/10.1117/1.JBO.18.3.036002
[5]
Opoku-Ansah, J. anderson, B., Eghan, J.M., Boampong, J.N., Osei-Wusu Adueming, P., Amuah, C.L.Y. and Akyea, A.G. (2013) Automated Protocol for Counting Malaria Parasites (P. falciparum) from Digital Microscopic Image Based on L*a*b* Colour Model and KMeans Clustering. International Journal of Computer Science and Security, 7, 149-158.
[6]
Bagui, K.O. and Zoueu, J.T. (2014) Red Blood Cells Counting by Circular Hough Transform Using Multispectral Images. Journal of Applied Sciences, 14, 3591-3594. https://doi.org/10.3923/jas.2014.3591.3594
[7]
Opoku-Ansah, J., Eghan, J.M., Anderson, B. and Boampong, J.N. (2014) Wavelength Markers for Malaria (Plasmodium falciparum) Infected and Uninfected Red Blood Cells for Ring and Trophozoite Stages. Applied Physics Research, 6, 47-55. https://doi.org/10.5539/apr.v6n2p47
[8]
Bagui, K.O., Yavo, W., Tano, D. and Zoueu, J.T. (2014) Etude de l’effet de l’amodiaquine sur les globules rouges infectés par le paludisme dans les images multi-spectrales. Afrique Science, 10, 36-44.
[9]
Omucheni, D.L., Kaduki, K.A., Bulimo, W.D. and Angeyo, H.K. (2014) Application of Principal Component Analysis to Multispectral Multimodal Optical Image Analysis for Malaria Diagnostics. Malaria Journal, 13, Article No. 485. http://www.malariajournal.com/content/13/1/485 https://doi.org/10.1186/1475-2875-13-485
[10]
Bagui, K.O., Zoueu, J.T. and Wählby, C. (2015) Automatic Malaria Diagnosis by the Use of Multispectral Contrast Imaging. Journal of Physical Chemical News, 75, 86-98.
[11]
Sangare, M., Bagui, O.K., Traore, I., Babana, A.H., Ba, A. and Zoueu, J.T. (2015) Discrimination de différentes sous phénotypes du Ralstonia solanacearum dans une feuille de tabac par imagerie multi-spectrale. Afrique Science, 11, 95-103. http://www.afriquescience.info
[12]
Sangare, M., Agneroh, T.A., Bagui, O.K., Traore, I., Ba, A. and Zoueu, J.T. (2015) Classification of African Mosaic Virus Infected Cassava Leaves by the Use of Multi-Spectral Imaging. Optics and Photonics Journal, 5, 261-272. https://doi.org/10.4236/opj.2015.58025 http://www.scirp.org/journal/opj
[13]
Sangare, M., Tekete, C., Bagui, O.K., Ba, A. and Zoueu, J.T. (2015) Identification of Bacterial Diseases in Rice Plants Leaves by the Use of Spectroscopic Imaging. Applied Physics Research Journal, 5, 61-69. https://doi.org/10.5539/apr.v7n6p61
[14]
Kouakou, A.K., Soro, A.P., Taky, A.K., Patrice, K. and Zoueu, J.T. (2017) Multi-Spectral and Fluorescence Imaging in Prevention of Overdose of Herbicides: The Case of Maize. Spectral Analysis Reviews, 5, 11-24. http://www.scirp.org/journal/sar https://doi.org/10.4236/sar.2017.52002
[15]
Wonni, I., Cottyn, B., Detemmerman, L., Dao, S., Ouedraogo, L., Sarra, S., Tekete, C., Poussier, S., Corral, R., Triplett, L., Koita, O., Koebnik, R., Leach, J., Szurek, B., Maes, M. and Verdier, V. (2014) Analysis of Xanthomonas oryzae pv. oryzicola Population in Mali and Burkina Faso Eveals a High Level of Genetic and Pathogenic Diversity. Phytopathology, 104, 520-531. https://doi.org/10.1094/PHYTO-07-13-0213-R
[16]
Yadessa, G.B., Bruggen Van, A.H.C. and Ocho, F.L. (2010) Effects of Different Soil Amendments on Bacterial Wilt Caused by Ralstonia solanacearum and on the Yield of Tomato. Journal of Plant Pathology, 92, 439-450.
[17]
Michel, V.V., Wang, J.F., Midmore, D.J. and Hartman, G.L. (1997) Effects of Intercropping and Soil Amendment with Urea and Calcium Oxide on the Incidence of Bacterial Wilt of Tomato and Survival of Soil-Borne Pseudomonas solanacearum in Taiwan. Plant Pathology, 46, 600-610. https://doi.org/10.1046/j.1365-3059.1997.d01-45.x
[18]
Konaté, I. (2007) Diversité Phénotypique et Moléculaire du Caroubier (Ceratonia siliqua L.) et des Bactéries Endophytes qui lui sont Associées. These de Doctorat, Universite Mohammed V-Agdal Faculte des Sciences Rabat, 2-168.
[19]
Saponari, M., Manjunath, K. and Yokomi, R.K. (2008) Quantitative Detection of Citrus tristeza Virus in Citrus and Aphids by Real-Time Reverse Transcription-PCR (TaqMan®). Journal of Virological Methods, 147, 43-53. https://doi.org/10.1016/j.jviromet.2007.07.026
[20]
Ruiz-Ruiz, S., Ambros, S., Vives, M.D.C., Navarro, L., Moreno, P. and Guerri, J. (2009) Detection and Quantification of Citrus Leaf Blotch Virus by Taq Man Real-Time RTPCR. Journal of Virological Methods, 160, 57-62. https://doi.org/10.1016/j.jviromet.2009.04.012
[21]
Marcel, A.A., Zoueu, J.T. and Konan, K. (2016) Characterization of a Multimodal and Multispectral Led Imager: Application to Organic Polymer’s Microspheres with Diameter Φ = 10.2 μm. Optics and Photonics Journal, 6, 171-183. http://www.scirp.org/journal/opj https://doi.org/10.4236/opj.2016.67019
[22]
Rousseau, D. (2017) Microscopie 3D de fluorescence à feuillet de lumière. Vol. 111. Union des professeurs de physique et de chimie, 987-997.
[23]
Bigirimana, S. and Legg, J.P. (2007) La menace de la pandemie de la mosaique du manioc sur la production et ses consequences au Burundi. Proceedings of the 13th ISTRC Symposium, Arusha, 359-364.