全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bio-Electromagnetics without Fields: The Effect of the Vector Potential

DOI: 10.4236/ojbiphy.2021.112007, PP. 205-224

Keywords: Vector-Potential, Scalar-Potential, Stochastic-Processes, Field-Free Effects, Curl-Free Fields, Axial-Vector, Life, Homeostasis, Entropy, 1/f Noise

Full-Text   Cite this paper   Add to My Lib

Abstract:

Numerous considerations deal with specialties of bioelectromagnetic effects, including the force-free and field-free interactions. The fact that bioelectromagnetic phenomena consist of effects without mechanical forces and even without measurable fields looks impossible in the simple considerations. However, the stochastic fluctuations cause surprising results, with scientifically proven bioelectromagnetism in field-free conditions. In the first steps, we show the scalar and vector potentials’ specialties instead of electric and magnetic fields defined by the well-known Maxwellian equations. The vanishing of the fields is connected to the potentials’ stochastic fluctuations, the noises control the “zero-ground”. The result shows a possibility of a wave that has no attenuation during its transmission through the material. In this meaning, the result is similar to the consequences of the scalar-wave (SW) considerations. The structural changes follow a particular noise spectrum (called pink-noise or 1/f noise), which keeps the entropy constant in a broad range of scaling magnification.

References

[1]  Lei, H., Pan, Y., Wu, R. and Lv, Y. (2020) Innate Immune Regulation under Magnetic Fields with Possible Mechanisms and Therapeutic Applications. Frontiers in Immunology, 11, Article ID: 582772.
https://doi.org/10.3389/fimmu.2020.582772
[2]  Zhu, M., Yang, Z., Yu, H., et al. (2020) The Efficacy and Safety of Low-Frequency Rotating Static Magnetic Field Therapy Combined with Chemotherapy on Advanced Lung Cancer Patients: A Randomized, Double Blinded, Controlled Clinical Trial. International Journal of Radiation Biology, 96, 943-950.
https://doi.org/10.1080/09553002.2020.1748737
[3]  Diao, Y.L., Sun, W.N., He, Y.Q., et al. (2017) Equivalent Magnetic Vector Potential Model for Low-Frequency Magnetic Exposure Assessment. Physics in Medicine and Biology, 62, 7905-7922.
https://doi.org/10.1088/1361-6560/aa8490
[4]  Lednev, V.V. (1991) Possible Mechanism for the Influence of Weak Magnetic Fields on Biological Systems. Bioelectromagnetics, 12, 71-75.
https://doi.org/10.1002/bem.2250120202
[5]  Belyavskaya, N.A. (2004) Biological Effects Due to Weak Magnetic Field on Plants. Advances in Space Research, 34, 1566-1574.
https://doi.org/10.1016/j.asr.2004.01.021
[6]  Tao, F.-M. (2003) Solvent Effects of Individual Water Molecules. In: Buch, V. and Devilin, J.P., Eds., Water in Confining Geometries, Cluster Physics, Springer Verlag, Berlin, 79-99.
https://doi.org/10.1007/978-3-662-05231-0_5
[7]  Buchachenko, A. (2016) Why Magnetic and Electromagnetic Effects in Biology Are Irreproducible and Contradictory? Bioelectromagnetics, 37, 1-13.
https://doi.org/10.1002/bem.21947
[8]  Smith, W. (2004) Quanta and Coherence Effects in Water and Living Systems. The Journal of Alternative and Complementary Medicine, 10, 69-78.
https://doi.org/10.1089/107555304322848977
[9]  Eden, D. (2008) Energy Medicine. Little, Brown Book Group.
[10]  Rampl, I., Palko, L., Hyrsl, P. and Vojtek, L. (2012) Pulsed Vector Magnetic Potential Field Existence. World Journal of Condensed Matter Physics, 2, 202-207.
https://doi.org/10.4236/wjcmp.2012.24034
[11]  Randerson, J. (2007) Electrosmog in the Clear with Scientists. The Guardian, January 18.
https://www.theguardian.com/technology/2007/jan/18/guardianweeklytechnologysection4
[12]  Oschman, J. (2000) Energy Medicine. The Scientific Basis, Churchill Livingstone.
[13]  Jain, S. and Mills, P.J. (2010) Biofield Therapies: Helpful or Full of Hype? A Best Evidence Synthesis. International Journal of Behavioral Medicine, 17, 1-16.
[14]  Meyl, K. (2001) Scalar Waves: Theory and Experiments. Journal of Scientific Exploration, 15, 199-205.
https://doi.org/10.1054/cuor.2001.0179
[15]  Tiller, W.A. (1999) Subtle Energies. Science & Medicine, 6, May/June.
[16]  Hall, H. (2005) A Review of Energy Medicine: The Scientific Basis. Skeptic Magazine, 11.
http://quackfiles.blogspot.com/2006/01/review-of-energy-medicine-scientific.html
[17]  Bruhn, G.W. (2000) Commentary on the Chapter “Scalar Waves” in “Energy Medicine—The Scientific Basis”.
http://www.mathematik.tu-darmstadt.de/~bruhn/Commentary-Oschman.htm
[18]  Bruhn, G.W. (2001) On the Existence of K. Meyl’s Scalar Waves. Journal of Scientific Exploration, 15, 206-210.
[19]  Hornberger, J. (2019) Who Is the Fake One Now? Questions of Quackery, Worldliness and Legitimacy. Critical Public Health, 29, 484-493.
https://doi.org/10.1080/09581596.2019.1602719
[20]  Maclis, R.M. (1993) Magnetic Healing, Quackery, and the Debate about the Health Effects of Electromagnetic Fields. Annals of Internal Medicine, 118, 376-383.
https://doi.org/10.7326/0003-4819-118-5-199303010-00009
[21]  Mckenzie, B. (2020) Do Pulsed Electromagnetic Field Devices Offer Any Benefit? Veterinary Practice News, Jan. 2 2020.
[22]  Basford, J.R. (2001) A Historical Perspective of the Popular Use of Electric and Magnetic Therapy. Archives of Physical Medicine and Rehabilitation, 82, 1261-1269.
https://doi.org/10.1053/apmr.2001.25905
[23]  Barrett, S. (2008/2019) Magnet Therapy: A Skeptical View. Quackwatch.
https://quackwatch.org/consumer-education/qa/magnet
[24]  Maxwell, J.C. (1998) A Treatise on Electricity and Magnetism. Clarendon Press, Oxford.
[25]  Lee, J.-H. and Chen, K.-M. (1982) Eddy Currents Induced by RF Magnetic Fields in Biological Bodies. Radio Science, 17, 61S-76S.
[26]  Pauli, W. (1958) Prinzipien Der Quantentheorie. Handbuch Der Physik bd. V. Springer Verlag, Berlin.
[27]  Marton, L. (1952) Electron Interferometer. Physical Review, 85, 1057-1058.
https://doi.org/10.1103/PhysRev.85.1057
[28]  Konopinsky, E.J. (1978) What the Electromagnetic Vector Potential Describes. American Journal of Physics, 46, 499-502.
https://doi.org/10.1119/1.11298
[29]  Chambers, R.G. (1960) Shift of an Electron Interference Pattern by Enclosed Magnetic Flux. Physical Review Letters, 5, 3-5.
https://doi.org/10.1103/PhysRevLett.5.3
[30]  Gubarev, F.V., Sodolsky, L. and Zakharov, V.I. (2001) On the Significance of the Vector Potential Squared. Physical Review Letters, 86, 2220-2222.
https://doi.org/10.1103/PhysRevLett.86.2220
[31]  Gubarrev, F.V. and Zakharov, V.I. (2000) On the Emerging Phenomenology of < (Aμa)min2   >. Physics Letters B, 501, 28-36.
https://doi.org/10.1016/S0370-2693(01)00085-5
[32]  Mie, G. (1912) Grundlagen einer theorie der materie. Annalen der Physik, 37, 39, 40.
https://doi.org/10.1002/andp.19123441102
[33]  Griffiths, D.J. (2007) Introduction to Electrodynamics. 3rd Edition, Pearson Education, Dorling Kindersley, London.
[34]  Cleani, F., Di Tommaso, A.O. and Vassallo, G. (2017) Maxwell’s Equations and Occam’s Razor. Journal of Condensed Matter Nuclear Science, 25, 100-128.
[35]  Simonyi, K. (1979) Theoretische Elektrotechnik. Vol. 20, 7th Edition, VEB Verlag, Berlin.
[36]  Vandas, M. and Romashets, E.P. (2003) A Force-Free Field with Constant Alpha in an Oblate Cylinder: A Generalization of the Lundquist Solution. Astronomy & Aastrophysics, 398, 801-807.
https://doi.org/10.1051/0004-6361:20021691
[37]  Einstein, A. and Laub, J. (1908) über die im elektromagnetischen Felde auf ruhende Körper ausgeübten ponderomotorischen Kräfte [On the Ponderomotive Forces Exerted on Bodies at Rest in the Electromagnetic Field]. Annalen der Physik, 26, 541-550. (In German)
https://doi.org/10.1002/andp.19083310807
[38]  Landau, L.D. and Lifsic, E.M. (1973) Theoretical Physics, II. Field Theory. Nauka Press, Moscow. (In Russian)
[39]  Rein, G. and Tiller, W.A. (1996) Anomalous Information Storage in Water: Spectroscopic Evidence for Non-Quantum Informational Transfer. Proceedings 3rd International Symposium on New Energy, Denver, 24-28 April 1996, 365.
[40]  Aharonov, Y. and Bohm, D. (1959) Significance of Electromagnetic Potentials in Quantum Theory. Physical Review, 115, 485-491.
https://doi.org/10.1103/PhysRev.115.485
[41]  Szasz, A., Vincze, Gy., Andocs, G. and Szasz, O. (2009) Do Field-Free Electromagnetic Potentials Play a Role in Biology? Electromagnetic Biology and Medicine, 28, 135-147.
https://doi.org/10.1080/15368370802711938
[42]  Reed, D. and Hively, L.M. (2020) Implications of Gauge-Free Extended Electrodynamics. Symmetry, 12, 2110.
https://doi.org/10.3390/sym12122110
[43]  Reed, D. (2019) Unravelling the Potentials Puzzle and Corresponding Case for the Scalar Longitudinal Electrodynamic Wave. IOP Journal of Physics Conference Series, 1251, Article ID: 012043.
https://doi.org/10.1088/1742-6596/1251/1/012043
[44]  Andocs, G., Vincze, Gy., Szasz, O., Szendro, P. and Szasz, A. (2009) Effect of Curl-Free Potentials on Water. I. Electromagnetic Biology and Medicine, 28, 166-181.
https://doi.org/10.1080/15368370902724724
[45]  Tao, F.-M. (2003) Solvent Effects of Individual Water Molecules, In: Buch, V. and Devilin, J.P., Eds., Water in Confining Geometries, Cluster Physics, Springer Verlag, Berlin, 79-99.
https://doi.org/10.1007/978-3-662-05231-0_5
[46]  Gagniuc, P.A. (2017) Markov Chains: From Theory to Implementation and Experimentation. John Wiley & Sons, Amsterdam, 1-235.
https://doi.org/10.1002/9781119387596
[47]  Gillespie, D.T. (1992) Markov Processes. Academic Press, San Diego.
[48]  Gillespie, D.T. (1996) The Mathematics of Brown Motion and Johnson Noise. American Journal of Physics, 64, 225.
https://doi.org/10.1119/1.18210
[49]  Vincze, I. (1971) Matematische Statistik mit Industriellen Anwendungen. Akadémiai Kiadó, Budapest.
[50]  Onsager, L. (1931) Reciprocal Relations in Irreversible Processes. Physical Review, 37, 405-426.
https://doi.org/10.1103/PhysRev.37.405
[51]  Walleczek, J. (2000) Self-Organized Biological Dynamics & Nonlinear Control. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511535338
[52]  Brown, J.H. and West, G.B. (2000) Scaling in Biology. Santa Fe Institute in the Sciences of Complexity, Oxford University Press, Oxford.
[53]  Musha, T. and Sawada, Y. (1994) Physics of the Living State. IOS Press, Amsterdam.
[54]  Marjan, M.I. and Szasz, A. (2000) Self-Organizing Processes in Non-Crystalline Materials: From Lifeless to Living Objects. OncoTherm Kft., Budapest.
[55]  West, G.B., Brown, J.H. and Enquist, B.J. (1999) The Four Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms. Science, 284, 1677-1679.
https://doi.org/10.1126/science.284.5420.1677
[56]  Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G. and Bonabeau, E. (2003) Self-Organization in Biological Systems, Princeton Studies in Complexity. Princeton University Press, Oxford.
[57]  West, B.J. (1990) Fractal Physiology and Chaos in Medicine. World Scientific, Singapore.
[58]  Bassingthwaighte, J.B., Leibovitch, L.S. and West, B.J. (1994) Fractal Physiology. Oxford University Press, New York.
https://doi.org/10.1007/978-1-4614-7572-9
[59]  Szendro, P., Vincze, G. and Szasz, A. (2001) Pink Noise Behaviour of the Bio-Systems. European Biophysics Journal, 30, 227-231.
https://doi.org/10.1007/s002490100143
[60]  Sharipov, F. (2006) Onsager-Casimir Reciprocal Relations Based on the Boltzmann Equation and Gas-Surface Interaction: Single Gas. Physical Review E, 73, Article ID: 026110.
https://doi.org/10.1103/PhysRevE.73.026110
[61]  Reno, V.R. and Nutini, L.G. (1963) Effect of Magnetic Fields on Tissue Respiration. Nature, 198, 204-205.
https://doi.org/10.1038/198204b0
[62]  Wolf, A.A. (1981) On a Unified Theory of Cancer Etiology and Treatment Based on the Superconduction Double-Dipole Model. Physiological Chemistry and Physics, 13, 493-510.
[63]  Easterly, C.E. (1981) Cancer Link to Magnetic Field Exposure: A Hypothesis. American Journal of Epidemiology, 114, 169-175.
https://doi.org/10.1093/oxfordjournals.aje.a113179
[64]  Bak, P., Tang, Ch. and Wiesenfeld, K. (1987) Self-Organized Criticality: An Explanation of 1/f Noise. Physical Review Letters, 59, 381-384.
https://doi.org/10.1103/PhysRevLett.59.381
[65]  Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, P.Ch. and Peng, C.-K. (2001) Fractal Dynamics in Physiology: Alterations with Disease and Aging. PNAS Colloquium, 99, 2466-2472.
https://doi.org/10.1073/pnas.012579499
[66]  Szendro, P., Vincze, Gy. and Szasz, A. (2001) Bio-Response to White Noise Excitation. Electro- and Magnetobiology, 20, 215-229.
https://doi.org/10.1081/JBC-100104145
[67]  Haken, H. (1977) Synergetics. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-66784-8
[68]  Sneppen, K., Krisna, S. and Semsey, S. (2010) Simplified Models of Biological Networks. Annual Review of Biophysics, 39, 43-59.
https://doi.org/10.1146/annurev.biophys.093008.131241
[69]  Turrigiano, G. (2007) Homeostatic Signaling: The Positive Side of Negative Feedback. Current Opinion in Neurobiology, 17, 318-324.
https://doi.org/10.1016/j.conb.2007.04.004
[70]  Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423 and 623-656.
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
[71]  Richman, J.S. and Moorman, J.R. (2000) Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. American Journal of Physiology, 278, H2039-H2049.
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
[72]  Hegyi, G., Vincze, Gy. and Szasz, A. (2007) Axial Vector Interaction with Bio-Systems. Electromagnetic Biology and Medicine, 26, 107-118.
https://doi.org/10.1080/15368370701380835
[73]  Costa, M., Goldberger, A.L. and Peng, C.K. (2005) Multiscale Entropy Analysis of Biological Signals. Physical Review E, 71, Article ID: 021906.
https://doi.org/10.1103/PhysRevE.71.021906
[74]  Thuraisingham, R.A. and Gottwald, G.A. (2006) On Multiscale Entropy Analysis for Physiological Data. Physica A, 366, 323-332.
https://doi.org/10.1016/j.physa.2005.10.008
[75]  Gelinas, R.C. (1984) United States Patent 4, 429, 280 (Jan. 31, 1984).
https://doi.org/10.1093/nq/31-2-280

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133