全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biologically-Effective-Dose of Tolpyralate and Tolpyralate plus Atrazine for Control of Multiple-Herbicide-Resistant Waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] in Corn

DOI: 10.4236/as.2021.124028, PP. 424-443

Keywords: Biological Effective Dose, Biomass, Density, Multiple-Herbicide-Resistant, Weed Management

Full-Text   Cite this paper   Add to My Lib

Abstract:

The biologically-effective-dose of tolpyralate, a new 4-hydroxyphenyl-pyruvate dioxygenase (HPPD)-inhibitor, applied alone or tank-mixed with atrazine, for the control of multiple-herbicide-resistant (MHR) waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] has not been studied in corn. Seven field experiments were conducted during a three-year period (2018, 2019, 2020) in Ontario, Canada with MHR waterhemp to determine: 1) the dose-response of MHR waterhemp to tolpyralate and tolpyralate plus atrazine, and 2) the relative efficacy of tolpyralate and tolpyralate plus atrazine to post-emergence corn herbicides, dicamba/atrazine (500/1000 g·ha1) and mesotrione + atrazine (100 + 280 g·ha1). Tolpyralate + atrazine (120 + 4000 g·ha1) caused 13% corn injury at one site two weeks after application (WAA), which was observed as transient foliar chlorosis and bleaching of new leaves. At 12 WAA, the predicted dose of tolpyralate for 50% control of MHR waterhemp at Cottam and on Walpole Island was 8 and 2 g·ha1, respectively; the predicted dose of tolpyralate + atrazine for 50% control of MHR waterhemp at Cottam and on Walpole Island was 5 + 160 and 1 + 21 g·ha1, respectively. The difference in predicted dose at the two sites is likely due to differences in MHR density and resistance profile. Applied at the registered rate, tolpyralate (30 g·ha1) and tolpyralate + atrazine (30 + 1000 g·ha1) controlled MHR waterhemp similar to dicamba/atrazine and mesotrione + atrazine across sites. This study demonstrates that tolpyralate + atrazine, applied POST, provides season-long control of MHR waterhemp in corn.

References

[1]  Heap, I. (2020) The International Survey of Herbicide Resistant Weeds.
http://www.weedscience.org
[2]  Benoit, L., Hedges, B., Schryver, M.G., Soltani, N., Hooker, D.C., Robinson, D.E., Laforest, M., Soufiane, B., Tranel, P.J., Giacomini, D. and Sikkema, P.H. (2020) The First Record of Protoporphyrinogen Oxidase and Four-Way Herbicide Resistance in Eastern Canada. Canadian Journal of Plant Science, 100, 327-331.
https://doi.org/10.1139/cjps-2018-0326
[3]  Costea, M., Weaver, S.E. and Tardif, F.J. (2005) The Biology of Invasive Alien Plants in Canada. 3. Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea & Tardif. Canadian Journal of Plant Science, 85, 507-522.
https://doi.org/10.4141/P04-101
[4]  Hartzler, R.G., Battles, B.A. and Nordby, D. (2004) Effect of Common Waterhemp (Amaranthus rudis) Emergence Date on Growth and Fecundity in Soybean. Weed Science, 52, 242-245.
https://doi.org/10.1614/WS-03-004R
[5]  Wu, C. and Owen, M.D.K. (2014) When Is the Best Time to Emerge: Reproductive Phenology and Success of Natural Common Waterhemp (Amaranthus rudis) Cohorts in the Midwest United States? Weed Science, 62, 107-117.
https://doi.org/10.1614/WS-D-13-00079.1
[6]  Leon, R.G. and Owen, M.D.K. (2003) Regulation of Weed Seed Dormancy through Light Temperature Interactions. Weed Science, 51, 752-758.
https://doi.org/10.1614/P2002-173
[7]  Leon, R.G., Bassham, D.C. and Owen, M.D.K. (2006) Germination and Proteome Analyses Reveal Intraspecific Variation in Seed Dormancy Regulation in Common Waterhemp (Amaranthus tuberculatus). Weed Science, 54, 305-315.
https://doi.org/10.1614/WS-05-115R1.1
[8]  Schryver, M.G., Soltani, N., Hooker, D.C., Robinson, D.E., Tranel, P.J. and Sikkema, P.H. (2017) Glyphosate-Resistant Waterhemp (Amaranthus tuberculatus var. rudis) in Ontario, Canada. Canadian Journal of Plant Science, 97, 1057-1067.
https://doi.org/10.1139/CJPS-2016-0371
[9]  Vyn, J.D., Swanton, C.J., Weaver, S.E. and Sikkema, P. (2007) Control of Herbicide-Resistant Common Waterhemp (Amaranthus tuberculatus var. rudis) with Pre- and Post-Emergence Herbicides in Soybean. Canadian Journal of Plant Science, 87, 175-182.
https://doi.org/10.4141/P06-016
[10]  Nordby, D., Hartzler, B. and Bradley, K. (2007) Biology and Management of Waterhemp. The Glyphosate, Weeds and Crops Series No. 13. Purdue Extension.
[11]  Kreiner, J.M., Glacomini, D.A., Bemm, F., Walthaka, B., Regaldao, J., Lanz, C., Hildebrandt, J., Sikkema, P.H., Tranel, P.J., Weigel, D., Stinchcombe, J.R. and Wright, S.I. (2018) Multiple Modes of Convergent Adaptation in the Spread of Glyphosate-Resistant Amaranthus tuberculatus. Proceedings of the National Academy of Sciences of the United States of America, 116, 21076-21084.
https://doi.org/10.1073/pnas.1900870116
[12]  Liu, J., Davis, A.S. and Tranel, P.J. (2012) Pollen Biology and Dispersal Dynamics in Waterhemp (Amaranthus tuberculatus). Weed Science, 60, 416-422.
https://doi.org/10.1614/WS-D-11-00201.1
[13]  Bell, M.S., Hager, A.G. and Tranel, P.J. (2013) Multiple Resistance to Herbicides from Four Site-of-Action Groups in Waterhemp (Amaranthus tuberculatus). Weed Science, 61, 460-468.
https://doi.org/10.1614/WS-D-12-00166.1
[14]  McMullan, P.M. and Green, J.M. (2011) Identification of a Tall Waterhemp (Amaranthus tuberculatus) Biotype Resistant to HPPD-Inhibiting Herbicides, Atrazine, and Thifensulfuron in Iowa. Weed Technology, 25, 514-518.
https://doi.org/10.1614/WT-D-10-00150.1
[15]  Shergill, L., Barlow, B., Bish, M. and Bradley, K. (2018) Investigations of 2,4-D and Multiple Herbicide Resistance in a Missouri Waterhemp (Amaranthus tuberculatus) Population. Weed Science, 66, 386-394.
https://doi.org/10.1017/wsc.2017.82
[16]  Jhala, A.J., Norsworthy, J.K., Gaine, Z.A., Sosnoskie, L.M., Beckie, H.J., Mallory-Smith, C.A., Liu, J., Wei, W., Wang, J. and Stoltenberg, D.E. (2020) Pollen-Mediated Gene Flow and Transfer of Resistance Alleles from Herbicide-Resistant Broadleaf Weeds. Weed Technology. (In Press)
https://doi.org/10.1017/wet.2020.101
[17]  Sarangi, D., Tyre, A.J., Patterson, E.L., Gaines, T.A., Irmak, S., Knezevic, S.Z., Lindquist, J.L. and Jhala, A.J. (2017) Pollen-Mediated Gene Flow from Glyphosate-Resistant Common Waterhemp (Amaranthus rudis Sauer): Consequences for the Dispersal of Resistance Genes. Scientific Reports, 7, Article No. 44913.
https://doi.org/10.1038/srep44913
[18]  Steckel, L.E. and Sprague, C.L. (2004) Common Waterhemp (Amaranthus rudis) Interference in Corn. Weed Science, 52, 359-364.
https://doi.org/10.1614/WS-03-066R1
[19]  Soltani, N., Vyn, J.D. and Sikkema, P. (2009) Control of Common Waterhemp (Amaranthus tuberculatus var. rudis) in Corn and Soybean with Sequential Herbicide Applications. Canadian Journal of Plant Science, 89, 127-132.
https://doi.org/10.4141/CJPS08051
[20]  Benoit, L., Soltani, N., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2019) Control of Multiple-Resistant Waterhemp [Amaranthus tuberculatus (Moq.) Sauer] with Preemergence and Postemergence Herbicides in Corn in Ontario. Canadian Journal of Plant Science, 99, 364-370.
https://doi.org/10.1139/cjps-2018-0087
[21]  Benoit, L., Soltani, N., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2019) Efficacy of HPPD-Inhibiting Herbicides Applied Preemergence or Postemergence for Control of Multiple Herbicide Resistant Waterhemp [Amaranthus tuberculatus (Moq.) Sauer]. Canadian Journal of Plant Science, 99, 379-383.
https://doi.org/10.1139/cjps-2018-0320
[22]  Hedges, B.K., Soltani, N., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2018) Control of Glyphosate-Resistant Waterhemp with Two-Pass Weed Control Strategies in Glyphosate/Dicamba-Resistant Soybean. American Journal of Plant Sciences, 9, 1424-1432.
https://doi.org/10.4236/ajps.2018.97104
[23]  Jhala, A.J., Sandell, L.D., Sarangi, D., Kruger, G.R. and Knezevic, S.Z. (2017) Control of Glyphosate-Resistant Common Waterhemp (Amaranthus rudis) in Glufosinate-Tolerant Soybean. Weed Technology, 31, 32-45.
https://doi.org/10.1017/wet.2016.8
[24]  Schryver, M.G., Soltani, N., Hooker, D.C., Robinson, D.E., Tranel, P.J. and Sikkema, P.H. (2017) Control of Glyphosate-Resistant Waterhemp (Amaranthus tuberculatus var. rudis) with Dicamba and Dimethenamid-P in Ontario. Canadian Journal of Plant Science, 98, 362-369.
https://doi.org/10.1139/CJPS-2017-0052
[25]  Vyn, J.D., Swanton, C.J., Weaver, S.E. and Sikkema, P.H. (2006) Control of Amaranthus tuberculatus var. rudis (Common Waterhemp) with Pre- and Post-Emergence Herbicides in Zea mays L. (Maize). Journal of Crop Protection, 25, 1051-1056.
https://doi.org/10.1016/j.cropro.2006.01.016
[26]  Mitchell, G., Bartlett, D.W., Fraser, T.E.M., Hawkes, T.R., Holt, D.C., Townson, J.K. and Wichert, R.A. (2001) Mesotrione: A New Selective Herbicide for Use in Maize. Pest Management Science, 57, 120-128.
https://doi.org/10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E
[27]  Osipitan, O.A., Scott, J.E. and Knezevic, S.Z. (2018) Tolpyralate Applied Alone and with Atrazine for Weed Control in Corn. The Journal of Agricultural Science, 10, 32-39.
https://doi.org/10.5539/jas.v10n10p32
[28]  Sarangi, D. and Jhala, A.J. (2017) Biologically Effective Rates of a New Premix (Atrazine, Bicyclopyrone, Mesotrione, and S-Metolachlor) for Preemergence or Postemergence Control of Common Waterhemp [Amaranthus tuberculatus (Moq.) Sauer var. rudis] in Corn. Canadian Journal of Plant Science, 97, 1075-1089.
https://doi.org/10.1139/CJPS-2017-0037
[29]  Willemse, C., Soltani, N., Benoit, L., Hooker, D.C., Jhala, A.J., Robinson, D.E. and Sikkema, P.H. (2020) Herbicide Programs for Control of Waterhemp (Amaranthus tuberculatus) Resistant to Three Distinct Herbicide Sites of Action in Corn. Weed Technology. (In Press)
https://doi.org/10.1017/wet.2020.140
[30]  Williams, M.M., Boydston, R.A., Peachey, R.E. and Robinson, D. (2011) Significance of Atrazine as a Tank-Mix Partner with Tembotrione. Weed Technology, 25, 299-302.
https://doi.org/10.1614/WT-D-10-00140.1
[31]  Hugie, J.A., Bollero, G.A., Tranel, P.J. and Riechers, D.E. (2008) Defining the Rate Requirements for Synergism between Mesotrione and Atrazine in Redroot Pigweed (Amaranthus retroflexus). Weed Science, 56, 265-270.
https://doi.org/10.1614/WS-07-128.1
[32]  Khort, J.R. and Sprague, C.L. (2017) Response of a Multiple-Resistant Palmer Amaranth (Amaranthus palmeri) Population to four HPPD-Inhibiting Herbicides Applied Alone and with Atrazine. Weed Science, 65, 534-535.
https://doi.org/10.1017/wsc.2017.28
[33]  Woodyard, A.J., Bollero, G.A. and Riechers, D.E. (2009) Broadleaf Weed Management in Corn Utilizing Synergistic Postemergence Herbicide Combinations. Weed Technology, 23, 513-518.
https://doi.org/10.1614/WT-08-188.1
[34]  Armel, G.R., Richardson, R.J., Wilson, H.P. and Hines, T.E. (2009) Strategies for Control of Horseweed (Conyza canadensis) and Other Winter Annual Weeds in No-Till Corn. Weed Technology, 23, 379-383.
https://doi.org/10.1614/WT-08-094.1
[35]  Hankamer, B., Barber, J. and Boekema, E.J. (1997) Structure and Membrane Organization of Photosystem II in Green Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 641-671.
https://doi.org/10.1146/annurev.arplant.48.1.641
[36]  Metzger, B.A., Soltani, N., Raeder, A.J., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2018) Tolpyralate Efficacy: Part II. Comparison of Three Group 27 Herbicides Applied Postemergence for Annual Grass and Broadleaf Weed Control in Corn. Weed Technology, 32, 707-713.
https://doi.org/10.1017/wet.2018.81
[37]  Langdon, N.M., Soltani, N., Raeder, A.J., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2020) Influence of Adjuvants on the Control of Glyphosate-Resistant Canada Fleabane and Waterhemp in Corn with Tolpyralate. American Journal of Plant Sciences, 11, 354-371.
https://doi.org/10.4236/ajps.2020.113026
[38]  Metzger, B.A., Soltani, N., Raeder, A.J., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2018) Tolpyralate Efficacy: Part I. Biologically-Effective Dose of Tolpyralate for Control of Annual Grass and Broadleaf Weeds in Corn. Weed Technology, 32, 698-706.
https://doi.org/10.1017/wet.2018.82
[39]  Metzger, B.A., Soltani, N., Raeder, A.J., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2019) Effect of Hybrid Varieties, Application Timing, and Herbicide Rate on Field Corn Tolerance to Tolpyralate plus Atrazine. Weed Technology, 67, 475-484.
https://doi.org/10.1017/wsc.2019.34
[40]  Anonymous (2017) Shieldex® 400SC Herbicide Label. SummitAgroUSA, Durham.
[41]  Anonymous (2019) Shieldex® 400SC Herbicide Label. ISK Biosciences Corporation, Concord.
[42]  Weed Science Society of America (2020) Composite List of Weeds.
https://wssa.net/wssa/weed/composite-list-of-weeds
[43]  Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) (2018) Publication 75A: Guide to Weed Control in Field Crops 2018. Queen’s Printer, Toronto, Ontario.
[44]  Cousens, R. (1985) A Simple Model Relating Yield Loss to Weed Density. Annals of Applied Biology, 107, 239-252.
https://doi.org/10.1111/j.1744-7348.1985.tb01567.x
[45]  Johnson, B.C. and Young, B.G. (2002) Influence of Temperature and Relative Humidity on the Foliar Activity of Mesotrione. Weed Science, 50, 157-161.
https://doi.org/10.1614/0043-1745(2002)050[0157:IOTARH]2.0.CO;2
[46]  Kikugawa, H., Satake, Y., Tonks, D.J., Grove, M., Nagayama, S. and Tsukamoto, M. (2015) Tolpyralate: New Post-Emergence Herbicide for Weed Control in Corn. Weed Science Society of America Conference Proceedings, Lexington, 9-12 February 2015, 275.
[47]  Hartzler, R.G., Buhler, D.D. and Stoltenberg, D.E. (1999) Emergence Characteristics of Four Annual Weed Species. Weed Science, 47, 578-584.
https://doi.org/10.1017/S0043174500092298

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133