GeSe nanosheets
were prepared by ultrasonic-assisted liquidphase
exfoliation (LPE), and the nonlinear saturated absorption performance was
experimentally studied. The modulation depth and saturation intensity of the
prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm2,
respectively. Using the saturated absorption
characteristics of GeSe SA, a passively Q-switched erbium-doped fiber laser was systematically
demonstrated. As the pump power increases, the pulse repetition
frequency increases from 22.8 kHz to 77.59 kHz.
The shortest pulse duration is 1.51 μs, and the corresponding pulse energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used
as high-efficiency SA in fiber lasers. Our results will provide a useful
reference for demonstrating pulsed fiber lasers based on GeSe equipment.
References
[1]
Li, L., Lv, R., Liu, S., Chen, Z., Wang, J., Wang, Y., Ren, W. and Liu, W. (2019) Ferroferric-Oxide Nanoparticle Based Q-Switcher for a 1 μm Region. Optical Materials Express, 9, 731-738. https://doi.org/10.1364/OME.9.000731
[2]
Guo, S.Y., Zhang, Y.P., Ge, Y.Q., Zhang, S.L., Zeng, H.B. and Zhang, H. (2019) 2D V-V Binary Materials: Status and Challenges. Advanced Materials, 31, Article ID: 1902352. https://doi.org/10.1002/adma.201902352
[3]
Guo, B., Xiao, Q.L., Wang, S.H. and Zhang, H. (2019) 2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser & Photonics Reviews, 13, Article ID: 1800327. https://doi.org/10.1002/lpor.201800327
[4]
Liu, W.J., Liu, M.L., Chen, X., Shen, T., Lei, M., Guo, J.G., Deng, H.X., Zhang, W., Dai, C.Q., Zhang, X.F. and Wei, Z.Y. (2020) Ultrafast Photonics of Two Dimensional AuTe2Se4/3 in Fiber Lasers. Communications Physics, 3, 15. https://doi.org/10.1038/s42005-020-0283-9
[5]
Guo, P.L., Li, X.H., Chai, T., Feng, T.C. and Ge, Y.Q. (2019) Few-Layer Bismuthene for Robust Ultrafast Photonics in C-Band Optical Communications. Nanotechnology, 30, Article ID: 354002. https://doi.org/10.1088/1361-6528/ab2150
[6]
Niu, K., Chen, Q., Sun, R., Man, B. and Zhang, H. (2017) Passively Q-Switched Erbium-Doped Fiber Laser Based on SnS2 Saturable Absorber. Optical Materials Express, 7, 3934-3943. https://doi.org/10.1364/OME.7.003934
[7]
Sadeq, S.A., Harun, S.W. and Al-Janabi, A.H. (2018) Ultrashort Pulse Generation with an Erbium-Doped Fiber Laser Ring Cavity Based on a Copper Oxide Saturable Absorber. Applied Optics, 57, 5180-5185. https://doi.org/10.1364/AO.57.005180
[8]
Mao, D., She, X.Y., Du, B.B., Yang, D.X., Zhang, W.D., Song, K., Cui, X.Q., Jiang, B.Q., Peng, T. and Zhao, J.L. (2016) Erbium-Doped Fiber Laser Passively Mode Locked with Few-Layer WSe2/MoSe2 Nanosheets. Scientific Reports, 6, Article No. 23583. https://doi.org/10.1038/srep23583
[9]
Chen, B.H., Zhang, X.Y., Wu, K., Wang, H. and Chen, J.P. (2015) Q-Switched Fiber Laser Based on Transition Metal Dichalcogenides MoS2, MoSe2, WS2, and WSe2. Optics Express, 23, 26723-26737. https://doi.org/10.1364/OE.23.026723
Nie, H.K., Sun, X.L., Zhang, B.T., Yan, B.Z., Li, G.R., Wang, Y.R., Liu, J.T., Shi, B.N., Liu, S.D. and He, J.L. (2018) Few-Layer TiSe2 as a Saturable Absorber for Nanosecond Pulse Generation in 2.95 μm Bulk Laser. Optics Letters, 43, 3349-3352. https://doi.org/10.1364/OL.43.003349
[16]
Yang, W., Xu, N. and Zhang, H. (2018) Nonlinear Absorption Properties of Indium Selenide and Its Application for Demonstrating Pulsed Er-Doped Fiber Laser. Laser Physics Letters, 15, Article ID: 105101. https://doi.org/10.1088/1612-202X/aad896
[17]
Song, Y.F., Chen, S., Zhang, Q., Li, L., Zhao, L.M., Zhang, H. and Tang, D.Y. (2016) Vector Soliton Fiber Laser Passively Mode Locked by Few Layer Black Phosphorus-Based Optical Saturable Absorber. Optics Express, 24, 25933-25942. https://doi.org/10.1364/OE.24.025933
[18]
Chen, Y., Jiang, G., Chen, S., Guo, Z., Yu, X., Zhao, C., Zhang, H., Bao, Q., Wen, S., Tang, D. and Fan, D. (2015) Mechanically Exfoliated Black Phosphorus as a New Saturable Absorber for Both Q-Switching and Mode-Locking Laser Operation. Optics Express, 23, 12823-12833. https://doi.org/10.1364/OE.23.012823
[19]
Song, Y.F., Liang, Z.M., Jiang, X.T., Chen, Y.X., Jun, Z., Lu, L., Ge, Y.Q., Wang, K., Zheng, J.L., Lu, S.B., Ji, J.H. and Zhang, H. (2017) Few-Layer Antimonene Decorated Microfiber: Ultra-Short Pulse Generation and All-Optical Thresholding with Enhanced Long Term Stability. 2D Materials, 4, Article ID: 045010. https://doi.org/10.1088/2053-1583/aa87c1
[20]
Liu, W.J., Liu, M.L., Liu, X.M., Lei, M. and Wei, Z.Y. (2020) SnSSe as a Saturable Absorber for an Ultrafast Laser with Superior Stability. Optics Letters, 45, 419-422. https://doi.org/10.1364/OL.380183
[21]
Zhang, Y., Li, X.H., Qyyum, A., Feng, T.C., Guo, P.L., Jiang, J. and Zheng, H.R. (2018) PbS Nanoparticles for Ultrashort Pulse Generation in Optical Communication Region. Particle & Particle Systems Characterization, 35, Article ID: 1800341. https://doi.org/10.1002/ppsc.201800341
[22]
Li, L., Pang, L.H., Zhao, Q.Y., Liu, W.J. and Su, Y.L. (2020) VSe2 Nanosheets for Ultrafast Fiber Lasers. Journal of Materials Chemistry C, 8, 1104-1109. https://doi.org/10.1039/C9TC06159B
[23]
Ma, P., Li, J., Zhang, H. and Yang, Z. (2020) Preparation of High-Damage Threshold WS2 Modulator and Its Application for Generating High-Power Large-Energy Bright-Dark Solitons. Infrared Physics and Technology, 105, Article ID: 103257. https://doi.org/10.1016/j.infrared.2020.103257
[24]
Feng, J.J., Li, X.H., Shi, Z.J., Zhen, C., Li, X.W., Leng, D.Y., Wang, Y.M., Liu, J. and Zhu, L.J. (2020) 2D Ductile Transition Metal Chalcogenides (TMCs): A Novel High-Performance Ag2S Nanosheets for Ultrafast Photonics. Advanced Optical Materials, 8, Article ID: 1901762. https://doi.org/10.1002/adom.201901762
[25]
Wang, Q., Kalantar-Zadeh, K., Kis, A., Coleman, J.N. and Strano, M.S. (2012) Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature Nanotechnology, 7, 699-712. https://doi.org/10.1038/nnano.2012.193
[26]
Kanazawa, T., Amemiya, T., Ishikawa, A., Upadhyaya, V., Tsuruta, K., Tanaka, T. and Miyamoto, Y. (2016) Few-Layer HfS2 Transistors. Scientific Reports, 6, Article No. 22277. https://doi.org/10.1038/srep22277
[27]
Huang, Y., Luo, Z., Li, Y., Zhong, M., Xu, B., Che, K., Xu, H., Cai, Z., Peng, J. and Weng, J. (2014) Widely-Tunable, Passively Q-Switched Erbium-Doped Fiber Laser with Few-Layer MoS2 Saturable Absorber. Optics Express, 22, 25258-25266. https://doi.org/10.1364/OE.22.025258
Rosdin, R.Z.R.R., Ahmad, F., Ali, N.M., Harun, S.W. and Arof, H. (2014) Q-Switched Er-Doped Fiber Laser with Low Pumping Threshold Using Graphene Saturable Absorber. Chinese Optics Letters, 12, 49-53. https://doi.org/10.3788/COL201412.091404
[30]
Kang, Z., Liu, M., Li, Z., Li, S., Jia, Z., Liu, C., Qin, W. and Qin, G. (2018) Passively Q-Switched Erbium Doped Fiber Laser Using a Gold Nanostars Based Saturable Absorber. Photonics Research, 6, 549. https://doi.org/10.1364/PRJ.6.000549
[31]
Hu, P., Huang, Y., Liu, F.F., Liu, Y., Guo, L.P., Ge, X.L. and Liu, X.J. (2019) Q-Switched Erbium-Doped Fiber Laser Based on ZrS2 as a Saturable Absorber. Chinese Optics Letters, 17, Article ID: 080603. https://doi.org/10.3788/COL201917.080603
[32]
Liu, X.J., Hu, P., Liu, Y., Guo, L.P., Ge, X.L. and Zhang, H.N. (2020) Conventional Solitons and Bound-State Solitons in an Erbium-Doped Fiber Laser Mode-Locked by TiSe2-Based Saturable Absorber. Nanotechnology, 31, Article ID: 365202. https://doi.org/10.1088/1361-6528/ab8fe6
[33]
Wei, K.H., Fan, S.H., Chen, Q.G. and Lai, X.M. (2017) Passively Mode-Locked Yb Fiber Laser with PbSe Colloidal Quantum Dots as Saturable Absorber. Optics Express, 25, 24901-24906. https://doi.org/10.1364/OE.25.024901
[34]
Ming, N., Tao, S.N., Yang, W.Q., Chen, Q.Y., Sun, R.Y., Wang, C., Wang, S.Y., Man, B.Y. and Zhang, H.N. (2018) Mode-Locked Er-Doped Fiber Laser Based on PbS/CdS Core/Shell Quantum Dots as Saturable Absorber. Optics Express, 26, 9017-9026. https://doi.org/10.1364/OE.26.009017
[35]
Zhang, H.N. and Liu, J. (2016) Gold Nanobipyramids as Saturable Absorbers for Passively Q-Switched Laser Generation in the 1.1 μm Region. Optics Letters, 41, 1150-1152. https://doi.org/10.1364/OL.41.001150
[36]
Kang, Z., Xu, Y., Zhang, L., Jia, Z.X., Liu, L., Zhao, D., Feng, Y., Qin, G.S. and Qin, W.P. (2013) Passively Mode-Locking Induced by Gold Nanorods in Erbium-Doped Fiber Lasers. Applied Physics Letters, 103, Article ID: 041105. https://doi.org/10.1063/1.4816516
[37]
Zhang, H.N., Li, B.W. and Liu, J. (2017) Gold Nanobipyramids as a Saturable Absorber for Passively Q-Switched Yb-Doped Fiber Laser Operation at 1.06 μm. Laser Physics Letters, 14, Article ID: 025104. https://doi.org/10.1088/1612-202X/aa538d
[38]
Kang, Z., Gao, X.J., Zhang, L., Feng, Y., Qin, G.S. and Qin, W.P. (2015) Passively Mode-Locked Fiber Lasers at 1039 and 1560 nm Based on a Common Gold Nanorod Saturable Absorber. Optical Materials Express, 5, 794-801. https://doi.org/10.1364/OME.5.000794
[39]
Novoselov, K.S., et al. (2005) Two-Dimensional Atomic Crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453.
[40]
Luo, Z.C., Liu, M., Liu, H., Zheng, X.W., Luo, A.P., Zhao, C.J., Zhang, H., Wen, S.C. and Xu, W.C. (2013) 2 GHz Passively Harmonic Mode-Locked Fiber Laser by a Microfiber-Based Topological Insulator Saturable Absorber. Optics Letters, 38, 5212-5215. https://doi.org/10.1364/OL.38.005212
[41]
Xu, N.N., Zhang, H.N. and Man, B.Y. (2018) Various Large-Energy Soliton Operations within an Er-Doped Fiber Laser with Bismuth Selenide as a Saturable Absorber. Applied Optics, 57, 8811-8818. https://doi.org/10.1364/AO.57.008811
[42]
Li, J.F., et al. (2016) Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers. Scientific reports, 6, Article No. 30361. https://doi.org/10.1038/srep30361
[43]
Luo, Z.C., Liu, M., Guo, Z.N., Jiang, X.F., Luo, A.P., Zhao, C.J., Yu, X.F., Xu, W.C. and Zhang, H. (2015) Microfiber-Based Few-Layer Black Phosphorus Saturable Absorber for Ultra-Fast Fiber Laser. Optics Express, 23, 20030-20039. https://doi.org/10.1364/OE.23.020030
[44]
Jiang, X.T., Liu, S.X., Liang, W.Y., Luo, S.J., He, Z.L., Ge, Y.Q., Wang, H.D., Cao, R., Zhang, F., Wen, Q., Li, J.Q., Bao, Q.L., Fan, D.Y. and Zhang, H. (2018) Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH). Laser & Photonics Reviews, 12, Article ID: 1700229. https://doi.org/10.1002/lpor.201700229
Vaughn Ii, D.D., Patel, R.J., Hickner, M.A., et al. (2010) Single-Crystal Colloidal Nanosheets of GeS and GeSe. Journal of the American Chemical Society, 132, 15170-15172. https://doi.org/10.1021/ja107520b
[47]
Mukherjee, B., Cai, Y., Tan, H.R., et al. (2013) NIR Schottky Photodetectors Based on Individual Single-Crystalline GeSe Nanosheet. ACS Applied Materials & Interfaces, 5, 9594-9604. https://doi.org/10.1021/am402550s
[48]
Fukunaga, T., Sugai, S., Kinosada, T., et al. (1981) Observation of New Raman Lines in GeSe and SnSe at Low Temperatures. Solid State Communications, 38, 1049-1052. https://doi.org/10.1016/0038-1098(81)90015-6
[49]
Chandrasekhar, H.R. and Zwick, U. (1976) Raman Scattering and Infrared Reflectivity in GeSe. Solid State Communications, 18, 1509-1513. https://doi.org/10.1016/0038-1098(76)90381-1
[50]
Luo, Z., Zhou, M., Weng, J., Huang, G., Xu, H., Ye, C. and Cai, Z. (2010) Graphene-Based Passively Q-Switched Dual-Wavelength Erbium-Doped Fiber Laser. Optics Letters, 35, 3709-3711. https://doi.org/10.1364/OL.35.003709
[51]
Zhu, X., Chen, S., Zhang, M., Chen, L., Wu, Q., Zhao, J., Jiang, Q., Zheng, Z. and Zhang, H. (2018) TiS2-Based Saturable Absorber for Ultrafast Fiber Lasers. Photonics Research, 6, C44-C48. https://doi.org/10.1364/PRJ.6.000C44
[52]
Yu, Z., Song, Y., Tian, J., Dou, Z., Guoyu, H., Li, K., Li, H. and Zhang, X. (2014) High-Repetition-Rate Q-Switched Fiber Laser with High Quality Topological Insulator Bi2Se3 Film. Optics Express, 22, 11508-11515. https://doi.org/10.1364/OE.22.011508
[53]
Jiang, T., Yin, K., Zheng, X., Yu, H. and Cheng, X.A. (2015) Black Phosphorus as a New Broadband Saturable Absorber for Infrared Passively Q-Switched Fiber Lasers.