The present study aims to explore the regeneration
potential of Moroccan cork oak through the secondary somatic embryogenesis
process. Particularly, we focus on the analysis of amino acids influence on the
quantity and quality of the regenerated
secondary embryos. The amino acids tested are: Glutamine, asparagine, arginine, tryptophane, methionine,
casein hydrolysate and urea. Each amino acid is added in the Margara
(N30K) medium at different concentrations
ranged between 10 and 500 mg/l. The results are collected after 2 months
of culture. First analysis shows that the glutamine and the casein hydrolysate gives a maximum number of somatic embryos,
clusters and pre-embryos newly formed on the clusters. By comparison to
the control medium, the increase of the
secondary embryos number directly formed exceed 36% in the case of casein hydrolysate and 35% of in the case of glutamine both at the
concentration of 30 mg/l. However, the test of the combination of these amino
acids did not have any significant results. In terms of quality, the influence
of amino acids on the morphology of secondary embryos was analyzed.
References
[1]
Gomez, A., Manzanera, J.A. and Pintos, B. (2014) Embryogenesis in Oak Species. A Review. Forest Systems, 23, 191-198. https://doi.org/10.5424/fs/2014232-05829
[2]
Aafi, A., Achhal El Kadmiri, A., Benabid, A. and Rouchdi, M. (2005) Richesse et diversité floristique de la subéraie de la Mamora (Maroc). Acta Botanica Malacitana, 30, 127-138. https://doi.org/10.24310/abm.v30i0.7187
Hernandez, I., Celestino, C., Alegro, J. and Toribio, M. (2003) Vegetative Propagation of Quercus suber L. by Somatic Embryogenesis: II. Plant Regeneration from Selected Cork Oak Trees. Plant Cell Reports, 21, 765-770.
https://doi.org/10.1007/s00299-003-0604-y
[5]
Hernández, S.I. (2007) Regeneración clonal de alcornoques adultos (Quercus suber L.) mediante embriogénesis somática. Tesis de doctoral, 1-241.
[6]
Capote, T., Usié, A., Barbosa, P., Ramos, M., Morais-Cecilio, L. and Goncalves, S. (2019) Transcriptome Dynamics of Corc Oak (Quercus suber) Somatic Embryogenesis Reveals Active Gene Players in Transcription Regulation and Phytohormone Homeostasis of Embryo Development. Tree Genetics & Genomes, 15, 52.
https://doi.org/10.1007/s11295-019-1353-6
[7]
Martinez, M.T., San José, M.C., Vieitez, A.M., Cernadas, M.J. and Ballester, A. (2017) Prpagation of Mature Quercus ilex L. (Holm Oak) Trees by Somatic Embryogenesis. Plant Cell, Tissue and Organ Culture, 131, 321-333.
https://doi.org/10.1007/s11240-017-1286-4
[8]
Hernandez, I., Cuenca, B., Carneros, E., Alonso-Blazquez, N., Ruiz, M., Celestino, C., Ocana, L., Alegre, J. and Toribio, M. (2011) Application of Plant Regeneration of Selected Cork Oak Trees by Somatic Embryogenesis to Implement Multivarietal Forestry for Cork Production. Tree and Forestry Science and Biotechnology, 5, 19-26.
[9]
Toribio, M., Fernandez, C., Celestino, C., Martinez, M.T., San-Jose, M.C. and Vieitez, A.M. (2004) Somatic Embryogenesis in Mature Quercus robur Trees. Plant Cell, Tissue and Organ Culture, 76, 283-287.
https://doi.org/10.1023/B:TICU.0000009245.92828.26
[10]
Valladares, S., Sánchez, C., Martínez, M.T., Ballester, A. and Vieitez, A.M. (2006) Plant Regeneration through Somatic Embryogenesis from Tissues of Mature Oak Trees: True-to-Type Conformity of Plantlets by RAPD Analysis. Plant Cell Reports, 25, 879-886. https://doi.org/10.1007/s00299-005-0108-z
[11]
San-José, M.C., Corredoira, E., Martinez, M.T., Vidal, N., Valladares, S., Mallon, R., Vieitez, A.M. (2010) Shoot Apex Explants for Induction of Somatic Embryogenesis in Mature Quercus robur L. Trees. Plant Cell Reports, 29, 661-671.
https://doi.org/10.1007/s00299-010-0852-6
[12]
Mallon, R., Covelo, P. and Vieitez, A.M. (2011) Improving Secondary Embryogenesis in Quercus robur: Application of Temporary Immersion for Mass Propagation. Trees, 26, 731-741. https://doi.org/10.1007/s00468-011-0639-6
[13]
Martinelli, L., Candioli, E., Costa, D. and Poletti, V. (2001) Morphogenic Competence of Vitis rupestris S. Secondary Somatic Embryos with a Long Culture History. Plant Cell Reports, 20, 279-284. https://doi.org/10.1007/s002990100339
[14]
Pinto, G., Valentim, H., Costa, A., Castro, S. and Santos, C. (2002) Somatic Embryogenesis and Plant Regeneration from Leaf Calli of Mature Quercus suber L. Plants. In Vitro Cellular & Developmental Biology—Plant, 6, 569-572.
https://doi.org/10.1079/IVP2002352
[15]
Pinto, G., Park, Y.S., Silva, S., Neves, L., Araujo, C. and Santos, C. (2008) Factors Affecting Maintenance, Proliferation, and Germination of Secondary Somatic Embryos of Eucalyptus globulus Labill. Plant Cell, Tissue Organ Culture, 95, 69-78.
https://doi.org/10.1007/s11240-008-9417-6
[16]
Young, B.G., Jack, D.L., Smith, D.W. and Saier, J.M.H. (1999) The Amino Acid/ Auxin: Proton Symport Permease Family. Biochimica et Biophysica Acta, 1415, 306-322. https://doi.org/10.1016/S0005-2736(98)00196-5
[17]
Garin, E., Bernier-Cardou, M., Isabel, N., Klimaszewska, K. and Plourde, A. (2000) Effect of Sugars, Amino Acids, and Culture Technique on Maturation of Somatic Embryos of Pinus strobus on Medium with Two Gellan Gum Concentrations. Plant Cell, Tissue and Organ Culture, 62, 27-37.
https://doi.org/10.1023/A:1006402215457
[18]
Corredoira, E., Valladares, S., Vieitez, A.M. and Ballester, A. (2008) Improved Germination of Somatic Embryos and Plant Recovery of European Chestnut. In Vitro Cellular & Developmental Biology—Plant, 44, 307-315.
https://doi.org/10.1007/s11627-008-9105-6
[19]
Kim, Y.W., Newton, R., Frampton, J. and Han, K.-H. (2008) Embryogenic Tissue Initiation and Somatic Embryogenesis in Fraser Fir (Abies fraseir (Pursh) Poir.). In Vitro Cellular & Developmental Biology—Plant, 45, 400-406.
https://doi.org/10.1007/s11627-008-9169-3
[20]
Martínez, M.T., Corredoira, E., Valladares, S., Jorquera, L. and Vieitez, A.M. (2008) Germination and Conversion of Somatic Embryos Derived from Mature Quercus robur Trees: The Effects of Cold Storage and Thidiazuron. Plant Cell, Tissue and Organ Culture, 95, 341-351. https://doi.org/10.1007/s11240-008-9448-z
[21]
Corredoira, E., Toribio, M. and Vieitez, E. (2014) Clonal Propagation via Somatic Embryogenesis in Quercus spp. In: Ramawhat, K.G., Mérillon, J.M. and Ahuja, M.R., Eds., Tree Biotechnology, CRC Press, Boca Raton, 262-302.
[22]
SPSS for Windows (2010) Guia Breve de IBM SPSS Statistics 19.SPSS Inc. IBM Company, Chicago, 171.
[23]
Pintos, B., Manzanera, J.A. and Bueno, M.A. (2010) Oak Somatic and Gametic Embryos Maturation Is Affected by Charcoal and Specific Amino Acids Mixture. Annals of Forest Science, 67, 205. https://doi.org/10.1051/forest/2009098
[24]
Fridborg, G. and Eriksson, T. (1975) Effects of Activated Charcoal on Growth and Morphogenesis in Cell Cultures. Physiologia Plantarum, 34, 306-308.
https://doi.org/10.1111/j.1399-3054.1975.tb03843.x
[25]
Fridborg, G., Pedersen, L., Landstrom, E. and Eriksson, T. (1978) The Effect of Activated Charcoal on Tissue Cultures: Adsorption of Metabolites Inhibiting Morphogenesis. Physiologia Plantarum, 43, 104-106.
https://doi.org/10.1111/j.1399-3054.1978.tb01575.x
[26]
Merkle, S.A. (1995) Strategies for Dealing with Limitations of Somatic Embryogenesis in Hardwood Trees. Plant Tissue Culture Biotechnology, 1, 112-121.
[27]
Von Arnold, S. (1987) Improved Efficiency of Somatic Embryogenesis in Mature Embryos of Picea abies (L.) Karst. Journal of Plant Physiology, 128, 233-244.
https://doi.org/10.1016/S0176-1617(87)80237-7
[28]
Kirby, E.G., Leustek, T. and Lee, M.S. (1987) Nitrogen Nutrition. In: Bonga, J.M. and Durzan, D.J., Eds., General Principles and Biotechnology, Cell and Tissue Culture in Forestry, Vol. 1, Nijhoff, Dordrecht, 67-88.
https://doi.org/10.1007/978-94-017-0994-1_5
[29]
Smith, D.R. (1994) Growth Medium for Plant Embryogenic Tissue. Australia Canada Patent #PM5232.
[30]
Smith, D.R. (1997) The Role of in Vitro Methods in Pine Plantation Establishment: The Lesson from New Zealand. Plant Tissue Culture and Biotechnology, 3, 63-73.
[31]
Stuart, D.A., Nelsen, J., MC Call, C.M., Strickland, S. and Walker, K.A. (1985) Physiology of the Development of Somatic Embryos in Cell Cultures of Alfalfa and Celery. In: Zaitlin, M., Day, P. and Hollaender, A., Eds., Bio-Technology in Plant Science, Academic Press, New York, 35-47.
https://doi.org/10.1016/B978-0-12-775310-2.50009-0
[32]
Barrett, J.D., Park, Y.S. and Bonga, J.M. (1997) The Effectiveness of Various Nitrogen Sources in White Spruce [Picea glauca (Moench) Voss] Somatic Embryogenesis. Plant Cell Reports, 16, 411-415. https://doi.org/10.1007/s002990050250