全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessing the Skills of Rossby Centre Regional Climate Model in Simulating Observed Rainfall over Rwanda

DOI: 10.4236/acs.2021.113023, PP. 398-418

Keywords: CORDEX, RCA4, Rainfall, Rwanda, Simulation Bias

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rainfall over Rwanda is highly variable both in space and time. This variability leads to chronic food insecurity due to the overdependence of the economy on rain-fed agriculture systems. This study aims to evaluate the skills of Rossby Centre Regional Climate Model (RCA4) simulations driven by 10 GCMs for the period 1951-2005 using the Global Precipitation Climatology Centre (GPCC v8) as a reference. Different statistical and geospatial metrics were used to deduce the model’s skills in simulating seasonal and annual rainfall. Results show that the country received bimodal rainfall pattern; March-May (MAM) and September-December (SOND). The RCA4 models are inconsistent in simulating the MAM rainy peak. However, the models are coherent in simulating SOND seasonal peak despite exhibiting wet bias. The models show reasonable skills in simulating mean annual cycle than interannual variability as depicted by insignificant correlation and different signs of rainfall trend. Conclusively, the performance of RCA4 models in simulating observed rainfall characteristics over Rwanda is relatively weak. The performance of the models differs at various time scales. Nevertheless, the models can be ranked from the best performing to the least as; CSIRO, CanESM2, CNRM, GFDL, MIROC5, ENS, EC-Earth, HadGEM2, IPSL, MPI, and NorESM1. Ranking the performance of RCA4 historical models acts as a basis for future climate model’s selection depending on the purpose of the study. The findings of this study may help in devising appropriate climate adaptation measures to respond to the ongoing global warming for sustainable economic and livelihood development. Additionally, modelers may improve the model’s parametrization schemes and lessen the inherent chronic biases for a better presentation of the future.

References

[1]  Anyah, R.O. and Qiu, W. (2012) Characteristic 20th and 21st Century Precipitation and Temperature Patterns and Changes over the Greater Horn of Africa. International Journal of Climatology, 32, 347-363.
https://doi.org/10.1002/joc.2270
[2]  IPCC (2014) Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K. and Meyer, L.A. (eds.)]. IPCC, Geneva, Switzerland, 151.
[3]  Alexander, L.V. and Arblaster, J.M. (2017) Historical and Projected Trends in Temperature and Precipitation Extremes in Australia in Observations and CMIP5. Weather and Climate Extremes, 15, 34-56.
https://doi.org/10.1016/j.wace.2017.02.001
[4]  World Bank (2012) Doing Business in the East African Economies. IFC/World Bank Rep, 116.
[5]  Ilunga, L., Muhire, I. and Mbaragijimana, C. (2004) Pluviometric Seasons and Rainfall Origin in Rwanda. Geo-Eco-Trop, 28, 61-68.
[6]  David, K., Megan, C., Christian, C., Jillian, D., Ryan, H., Robert, M., Mathew, W., Sally, T., Andrew, A.B. and Michael, H. (2011) Green Growth and Climate Resilience National Strategy for Climate Change and Low Carbon Development. Republic of Rwanda, Kigali.
[7]  Muhire, I. and Ahmed, F. (2014) Spatio-Temporal Trend Analysis of Precipitation Data over Rwanda. South African Geographical Journal, 97, 50-68.
https://doi.org/10.1080/03736245.2014.924869
[8]  Ngarukiyimana, J.P., Fu, Y., Yang, Y., Ogwang, B.A., Ongoma, V. and Ntwali, D. (2018) Dominant Atmospheric Circulation Patterns Associated with Abnormal Rainfall Events over Rwanda, East Africa. International Journal of Climatology, 38, 187- 202.
https://doi.org/10.1002/joc.5169
[9]  Ntirenganya, F. (2018) Analysis of Rainfall Variability in Rwanda for Small-Scale Farmers Coping Strategies to Climate Variability. East African Journal of Science and Technology, 8, 75-96.
[10]  Asumadu-Sarkodie, S., Rufangura, P., Jayaweera, M.P.C. and Owusu, P.A. (2015) Situational Analysis of Flood and Drought in Rwanda. International Journal of Scientific and Engineering Research, 6, 960-970.
https://doi.org/10.14299/ijser.2015.08.013
[11]  Ayugi, B., Tan, G., Gnitou, G.T., Ojara, M. and Ongoma, V. (2019) Historical Evaluations and Simulations of Precipitation over East Africa from Rossby Centre Regional Climate Model. Atmospheric Research, 232, Article ID: 104705.
https://doi.org/10.1016/j.atmosres.2019.104705
[12]  Bhattacharjee, P.S. and Zaitchik, B.F. (2015) Perspectives on CMIP5 Model Performance in the Nile River Headwaters Regions. International Journal of Climatology, 35, 4262-4275.
https://doi.org/10.1002/joc.4284
[13]  Ongoma, V., Chen, H. and Gao, C. (2018) Evaluation of CMIP5 Twentieth Century Rainfall Simulation over the Equatorial East Africa. Theoretical and Applied Climatology, 135, 893-910.
https://doi.org/10.1007/s00704-018-2392-x
[14]  Kisembe, J., Favre, A., Alessandro, D., Lennard, C., Sabiiti, G. and Nimusiima, A. (2019) Evaluation of Rainfall Simulations over Uganda in CORDEX Regional Climate Models. Theoretical and Applied Climatology, 137, 1117-1134.
https://doi.org/10.1007/s00704-018-2643-x
[15]  Mumo, L. and Yu, J. (2020) Gauging the Performance of CMIP5 Historical Simulation in Reproducing Observed Gauge Rainfall over Kenya. Atmospheric Research, 236, Article ID: 104808.
https://doi.org/10.1016/j.atmosres.2019.104808
[16]  Müller, C., Waha, K., Bondeau, A. and Heinke, J. (2014) Hotspots of Climate Change Impacts in Sub-Saharan Africa and Implications for Adaptation and Development. Global Change Biology, 20, 2505-2517.
https://doi.org/10.1111/gcb.12586
[17]  Raghavan, S.V., Liu, J., Nguyen, N.S., Vu, M.T. and Liong, S.-Y. (2018) Assessment of CMIP5 Historical Simulations of Rainfall over Southeast Asia. Theoretical and Applied Climatology, 132, 989-1002.
https://doi.org/10.1007/s00704-017-2111-z
[18]  Ayugi, B., Tan, G., Gnitou, G.T., Ojara, M. and Ongoma, V. (2019) Historical Evaluations and Simulations of Precipitation over East Africa from Rossby Centre Regional Climate Model. Atmospheric Research, 232, Article ID: 104705.
https://doi.org/10.1016/j.atmosres.2019.104705
[19]  Stensrud, D.J. (2009) Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge.
[20]  Meehl, G.A., Boer, G.J., Covey, C., Latif, M. and Stouffer, R.J. (2000) The Coupled Model Intercomparison Project (CMIP). Bulletin of the American Meteorological Society, 81, 313-318.
https://doi.org/10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2
[21]  Taylor, K., Stouffer, R. and Meehl, G. (2012) An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93, 485-498.
https://doi.org/10.1175/BAMS-D-11-00094.1
[22]  Otieno, V.O. and Anyah, R.O. (2013) CMIP5 Simulated Climate Conditions of the Greater Horn of Africa (GHA) Part 1: Contemporary Climate. Climate Dynamics, 41, 2081-2097.
https://doi.org/10.1007/s00382-012-1549-z
[23]  Wilby, R.L., Dawson, C.W. and Barrow, E.M. (2002) SDSM—A Decision Support Tool for the Assessment of Regional Climate Change Impacts. Environmental Modelling & Software, 17, 145-157.
https://doi.org/10.1016/S1364-8152(01)00060-3
[24]  Favre, A., Philippon, N., Pohl, B., Kalognomou, E.-A., Lennard, C., Hewitson, B., Cerezo-Mota, R., et al. (2016) Spatial Distribution of Rainfall Annual Cycles over South Africa in 10 CORDEX Regional Climate Model Present-Day Simulations. Climate Dynamics, 46, 1799-1818.
https://doi.org/10.1007/s00382-015-2677-z
[25]  Zhao, M., Held, I.M., Lin, S.-J. and Vecchi, G.A. (2009) Simulations of Global Hurricane Climatology, Interannual Variability, and Response to Global Warming Using a 50-km Resolution GCM. Journal of Climate, 22, 6653-6678.
https://doi.org/10.1175/2009JCLI3049.1
[26]  Gent, P.R., Yeager, S.G., Neale, R.B., Levis, S. and Bailey, D.A. (2010) Improvements in a Half Degree Atmosphere/Land Version of the CCSM. Climate Dynamics, 34, 819-833.
https://doi.org/10.1007/s00382-009-0614-8
[27]  Laprise, R., Kornic, D., Rapaic, M., Separovic, L., LeDuc, M., Nikiema, O., Di Luca, A., Diaconescu, E., Alexandru, A., Lucas-Picher, P., et al. (2020) Considerations of Domain Size and Large-Scale Driving for Nested Regional Climate Models: Impact on Internal Variability and Ability at Developing Small-Scale Details. Springer, Berlin/Heidelberg, 181-199.
https://doi.org/10.1007/978-3-7091-0973-1_14
[28]  Gusain, A., Ghosh, S. and Karmakar, S. (2020) Added Value of CMIP6 over CMIP5 Models in Simulating Indian Summer Monsoon Rainfall. Atmospheric Research, 232, Article ID: 104680.
https://doi.org/10.1016/j.atmosres.2019.104680
[29]  Endris, H.S., Lennard, C., Hewitson, B., Dosio, A., Nikulin, G. and Panitz, H.-J. (2016) Teleconnection Responses in Multi-GCM Driven CORDEX RCMs over Eastern Africa. Climate Dynamics, 46, 2821-2846.
https://doi.org/10.1007/s00382-015-2734-7
[30]  Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F. (2011) The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Quarterly Journal of the Royal Meteorological Society, 137, 553-597.
https://doi.org/10.1002/qj.828
[31]  Akinsanola, A.A., Ajayi, V.O., Adejare, A.T., Adeyeri, O.E., Gbode, I.E., Ogunjobi, K.O., Nikulin, G. and Abolude, A.T. (2017) Evaluation of Rainfall Simulations over West Africa.
[32]  Muhire, I., Ahmed, F. and Abutaleb, K. (2015) Relationships between Rwandan Seasonal Rainfall Anomalies and ENSO Events. Theoretical and Applied Climatology, 122, 271-284.
https://doi.org/10.1007/s00704-014-1299-4
[33]  Jonah, K., Wen, W., Shahid, S., Ali, M.A., Bilal, M., Habtemicheal, B.A., Tiwari, P., et al. (2021) Spatiotemporal Variability of Rainfall Trends and Influencing Factors in Rwanda. Journal of Atmospheric and Solar-Terrestrial Physics, 219, Article ID: 105631.
https://doi.org/10.1016/j.jastp.2021.105631
[34]  Black, E., Slingo, J.M. and Sperber, K.R. (2003) An Observational Study of the Relationship between Excessively Strong Short Rains in Coastal East Africa and Indian Ocean SST. Monthly Weather Review, 131, 74-94.
https://doi.org/10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2
[35]  Nicholson, S.E. and Grist, J.P. (2003) The Seasonal Evolution of the Atmospheric Circulation over West Africa and Equatorial Africa. Journal of Climate, 16, 1013- 1030.
https://doi.org/10.1175/1520-0442(2003)016<1013:TSEOTA>2.0.CO;2
[36]  Washington, R. and Preston, A. (2006) Extreme Wet Years over Southern Africa: Role of Indian Ocean Sea-Surface Temperatures. Journal of Geophysical Research, 111, D15104.
https://doi.org/10.1029/2005JD006724
[37]  Kizza, M., Rodhe, A., Xu, C.-Y., Ntale, H.K. and Halldin, S. (2009) Temporal Rainfall Variability in the Lake Victoria Basin in East Africa during the Twentieth Century. Theoretical and Applied Climatology, 98, 119-135.
https://doi.org/10.1007/s00704-008-0093-6
[38]  Shongwe, M.E., van Oldenborgh, G.J., van den Hurk, B. and van Aalst, M. (2011) Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part II: East Africa. Journal of Climate, 24, 3718-3733.
https://doi.org/10.1175/2010JCLI2883.1
[39]  Endris, H.S., Omondi, P., Jain, S., Lennard, C., Hewitson, B., Chang’a, L., Awange, J.L., Dosio, A., Ketiem, P., Nikulin, G., Panitz, H.J., Büchner, M., Stordal, F., Tazalika, L., Al, E.E.T., Anitz, R.P. and Atthias, M.B.U. (2013) Assessment of the Performance of CORDEX Regional Climate Models in Simulating East Africa Rainfall. Journal of Climate, 26, 8453-8475.
https://doi.org/10.1175/JCLI-D-12-00708.1
[40]  Manatsa, D., Morioka, Y., Behera, S.K., Matarira, C.H. and Yamagata, T. (2014) Impact of Mascarene High Variability on the East African “Short Rains”. Climate Dynamics, 42, 1259-1274.
https://doi.org/10.1007/s00382-013-1848-z
[41]  Ogwang, B.A., Chen, H., Tan, G., Ongoma, V. and Ntwali, D. (2015) Diagnosis of East Africa Climate and the Circulation Mechanisms Associated with Extreme Wet and Dry Events: A Study Based on RegCM4. Arabian Journal of Geosciences, 8, 10255-10265.
https://doi.org/10.1007/s12517-015-1949-6
[42]  Behera, S.K., Luo, J.-J., Masson, S., Delecluse, P., Gualdi, S., Navarra, A. and Yamagata, T. (2005) Paramount Impact of the Indian Ocean Dipole on the East Africa Short Rains: A CGCM Study. Journal of Climate, 18, 4514-4530.
https://doi.org/10.1175/JCLI3541.1
[43]  Unden, P., Rontu, L., Jinen, H., Lynch, P., Calvo, J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., Garcia-Moya, J.A., Jones, C., Geert Lenderlink, G., Mcdonald, A., Mcgrath, R., Navascues, B., Nielsen, N.W., Degaard, V., Rodriguez, E., Rummukainen, M., Sattler, K., Sass, B.H., Savijarvi, H., Schreur, B.W. and Sigg, R. (2002) HIRLAM-5 Scientific Documentation.
https://repositorio.aemet.es/bitstream/20.500.11765/6323/1/HIRLAMSciDoc_Dec2002.pdf
[44]  Tamoffo, A.T., Moufouma-Okia, W., Dosio, A., James, R., Pokam, W.M., Vondou, D.A. and Nouayou, R. (2019) Process-Oriented Assessment of RCA4 Regional Climate Model 44 Projections over the Congo Basin under 1.5°C and 2°C Global Warming Levels: Influence of Regional Moisture Fluxes. Climate Dynamics, 53, 1911-1935.
[45]  Samuelsson, P., Jones, C.G., Willén, U., Ullerstig, A., Gollvik, S., Hansson, U., Hansson, U., Jansson, C., Kjellströ, E., Nikulin, G. and Wyser, K. (2012) The Rossby Centre Regional Climate Model RCA3: Model Description and Performance. Tellus A, 63, 4-23.
https://doi.org/10.1111/j.1600-0870.2010.00478.x
[46]  Casanova, S. and Ahrens, B. (2009) On the Weighting of Multimodel Ensembles in Seasonal and Short-Range Weather Forecasting. Monthly Weather Review, 137, 3811-3822.
https://doi.org/10.1175/2009MWR2893.1
[47]  Mann, H.B. (1945) Nonparametric Tests against Trend. Econometrica, 13, 245-259.
https://doi.org/10.2307/1907187
[48]  Kendall, M. (1975) Rank Correlation Methods. 4th Edition, Charles Griffin, San Francisco, 8.
[49]  Sen, P.K. (1968) Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379-1389.
https://doi.org/10.1080/01621459.1968.10480934
[50]  Xu, M., Kang, S., Wu, H. and Yuan, X. (2018) Detection of Spatio-Temporal Variability of Air Temperature and Precipitation Based on Long-Term Meteorological Station Observations over Tianshan Mountains, Central Asia. Atmospheric Research, 203, 141-163.
https://doi.org/10.1016/j.atmosres.2017.12.007
[51]  Ongoma, V. and Chen, H. (2017) Temporal and Spatial Variability of Temperature and Precipitation over East Africa from 1951 to 2010. Meteorology and Atmospheric Physics, 129, 131-144.
https://doi.org/10.1007/s00703-016-0462-0
[52]  Mumo, L., Yu, J. and Ayugi, B. (2019) Evaluation of Spatiotemporal Variability of Rainfall over Kenya from 1979 to 2017. Journal of Atmospheric and Solar-Terre-strial Physics, 194, Article ID: 105097.
https://doi.org/10.1016/j.jastp.2019.105097
[53]  Tadeyo, E., Chen, D., Ayugi, B. and Yao, C. (2020) Characterization of Spatio-Temporal Trends and Periodicity of Precipitation over Malawi during 1979-2015. Atmosphere, 11, 891.
https://doi.org/10.3390/atmos11090891
[54]  Tan, G., Ayugi, B., Ngoma, H. and Ongoma, V. (2020) Projections of Future Meteorological Drought Events under Representative Concentration Pathways (RCPs) of CMIP5 over Kenya, East Africa. Atmospheric Research, 246, Article ID: 105112.
https://doi.org/10.1016/j.atmosres.2020.105112
[55]  Taylor, K.E. (2001) Summarizing Multiple Aspects of Model Performance in a Single Diagram. Journal of Geophysical Research: Atmospheres, 106, 7183-7192.
https://doi.org/10.1029/2000JD900719
[56]  Fu, G., Liu, Z., Charles, S.P., Xu, Z. and Yao, Z. (2013) A Score-Based Method for Assessing the Performance of GCMs: A Case Study of Southeastern Australia. Journal of Geophysical Research: Atmospheres, 118, 4154-4167.
https://doi.org/10.1002/jgrd.50269
[57]  Yang, W., Seager, R., Cane, M.A. and Lyon, B. (2015) The Rainfall Annual Cycle Bias over East Africa in CMIP5 Coupled Climate Models. Journal of Climate, 28, 9789-9802.
https://doi.org/10.1175/JCLI-D-15-0323.1
[58]  Rowell, D.P., Booth, B.B., Nicholson, S.E. and Good, P. (2015) Reconciling Past and Future Rainfall Trends over East Africa. Journal of Climate, 28, 9768-9788.
https://doi.org/10.1175/JCLI-D-15-0140.1
[59]  Endris, H.S., Omondi, P., Jain, S., Lennard, C., Hewitson, B., Chang’a, L., Awange, J.L., Dosio, A., Ketiem, P., Nikulin, G., Panitz, H.J., Büchner, M., Stordal, F., Tazalika, L., Al, E.E.T., Anitz, R.P. and Atthias, M.B.U. (2013) Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall. Journal of Climate, 26, 8453-8475.
https://doi.org/10.1175/JCLI-D-12-00708.1
[60]  Luhunga, P., Botai, J. and Kahimba, F. (2016) Evaluation of the Performance of CORDEX Regional Climate Models in Simulating Present Climate Conditions of Tanzania. Journal of Southern Hemisphere Earth Systems Science, 66, 32-54.
https://doi.org/10.1071/ES16005
[61]  Mutayoba, E. and Kashaigili, J.J. (2017) Evaluation for the Performance of the CORDEX Regional Climate Models in Simulating Rainfall Characteristics over Mbarali River Catchment in the Rufiji Basin. Tanzania. Journal of Geoscience and Environment Protection, 5, 139-151.
https://doi.org/10.4236/gep.2017.54011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133