Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km⋅sec-1⋅parsc-1, this value had been steadily amended as the observational tools became more accurate and precise. Despite this, a gap remains between the value of observations relating to local and nonlocal estimations of the Hubble parameter that gave rise to what became known as the Hubble tension. This tension is addressed here while dealing with space fabric as a cosmological fluid that undergoes transition.
References
[1]
Riess, A.G., Casertano, S., Yuan, W., Macri, L.M. and Scolnic, D. (2019) Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astrophysical Journal, 876, 85. https://doi.org/10.3847/1538-4357/ab1422
[2]
Wong, K.C., Suyu, S.H., Chen, G.F., Rusu, C.L., et al. (2019) H0LiCOW—XIII. A 2.4 per cent Measurement of H0 from Lensed Quasars: 5.3σ Tension between Early- and Late-Universe Probe. Monthly Notices of the Royal Astronomical Society, 498, 1420-1439. https://doi.org/10.1093/mnras/stz3094
[3]
De Jaeger, T., Stahl, B.E., Zheng, W., Filippenko, A.V., Riess, A.G. and Galbany, L. (2020) A Measurement of the Hubble Constant from Type II Supernovae. Monthly Notices of the Royal Astronomical Society, 496, 3402-3411. https://doi.org/10.1093/mnras/staa1801
[4]
Huang, C.D., Riess, A.G., Yuan, W., Macri, L.M., Zakamska, N.L., Casertano, S., et al. (2020) Hubble Space Telescope Observations of Mira Variables in the SN Ia Host NGC 1559: An Alternative Candle to Measure the Hubble Constant. The Astrophysical Journal, 889, 5. https://doi.org/10.3847/1538-4357/ab5dbd
[5]
Aghanim, N., Akrami, Y., Ashdown, M., et al. (2020) Planck 2018 Results VI. Cosmological Parameters. Astronomy & Astrophysics, 641, A6.
[6]
Aiola, S., Calabrese, E., Maurin, L., Naess, S., Schmitt, B.L., et al. (2020) The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters. Journal of Cosmology and Astroparticle Physics, 12, 047. https://doi.org/10.1088/1475-7516/2020/12/047
[7]
Aghanim, N., Akrami, Y., Ashdown, M., et al. (2020) Planck 2018 Results. V. CMB Power Spectra and Likelihoods. Astronomy & Astrophysical Journal, 641, A5.
[8]
Ade, P.A.R., Aghanim, N., Arnaud, M., et al. (2016) Planck 2015 Results XIII. Cosmological Parameters. Astronomy &Astrophysics, 594, A13.
[9]
Kassem, A. (2020) Symmetries in the Universe, a Quanton Origin. International Astronomy and Astrophysics Research Journal, 2, 52-70. http://www.journaliaarj.com/index.php/IAARJ/article/view/27
[10]
Kassem, A. (n.d.) Quanton Based Model of Field Interactions. http://vixra.org/abs/1912.0314
[11]
Das, S. and Roychowdhury, D. (2020) Thermodynamics of a Photon Gas with an Invariant Energy Scale. Physical Review D, 81, Article ID: 085039. http://doi.org/10.1103/PhysRevD.81.085039
[12]
Mansuripur, M. and Han, P. (2017) Thermodynamics of Radiation Pressure and Photon Momentum. Dholakia, K. and Spalding, G.C., Eds., Optical Trapping and Optical Micromanipulation XIV, Proceedings of SPIE Vol. 10347, 1-20. http://doi.org/10.1117/12.2274589
[13]
Poulin, V., Smith, T.L., Karwal, T. and Kamionkowski, M. (2019) Early Dark Energy Can Resolve the Hubble Tension. Physical Review Letters, 122, 221301. https://doi.org/10.1103/PhysRevLett.122.221301
[14]
Niedermann, F. and Sloth, M.S. (2020) Resolving the Hubble Tension with New Early Dark Energy. Physical Review D, 102, Article ID: 063527. https://doi.org/10.1103/PhysRevD.102.063527
[15]
Lin, M.X., Benevento, G., Hu, W. and Raveri, M. (2019) Acoustic Dark Energy: Potential Conversion of the Hubble. Physical Review D, 100, 063542. https://doi.org/10.1103/PhysRevD.100.063542
[16]
Abadi, T. and Kovetz, E.D. (2021) Can Conformally Coupled Modified Gravity Solve the Hubble Tension? Physical Review D, 103, 023530. https://doi.org/10.1103/PhysRevD.103.023530
[17]
Di Valentino, E., Ferreira, R.Z., Visinelli, L. and Danielsson, U. (2019) Late Time Transitions in the Quintessence Field and the H0 Tension. Physics of the Dark Universe, 26, 100385. https://doi.org/10.1016/j.dark.2019.100385
[18]
Pan, S., Yang, W., DiValentino, E., Saridakis, E.N. and Chakraborty, S. (2019) Interacting Scenarios with Dynamical Dark Energy: Observational Constraints and Alleviation of the H0 Tension. Physical Review D, 100, 103520. https://doi.org/10.1103/PhysRevD.100.103520
[19]
Lancaster, L., Cyr-Racine, F.-Y., Knox, L. and Pan, Z. (2017) A Tale of Two Modes: Neutrino Free-Streaming in the Early Universe. Journal of Cosmology and Astroparticle Physics, 7, 033. https://doi.org/10.1088/1475-7516/2017/07/033
Telkamp, H. (2016) Machian Derivation of the Friedmann Equation. Physical Review D, 94, 043520. https://doi.org/10.1103/PhysRevD.94.043520
[22]
Oldershaw, R.L. (1989) Towards a Resolution of the Vacuum Energy Density Crisis. https://arxiv.org/abs/0901.3381
[23]
Valev, D. (2014) Estimations of Total Mass and Energy of the Universe. Physics International, 5, 15-20. https://doi.org/10.3844/pisp.2014.15.20
[24]
Efstathiou, G. and Gratton, S. (2020) The Evidence for a Spatially Flat Universe. Monthly Notices of the Royal Astronomical Society: Letters, 496, L91-L95. https://doi.org/10.1093/mnrasl/slaa093