Today, energy is a vital component in the functioning of a hospital.
Hospital technical facilities have several types of technologies, these include
appliances for use; examination apparatus. So, for Quality Health Care in a
hospital, there is a need to ensure the proper functioning of hospital equipment. In addition
to the required maintenance as specified by the device manufacturer, the quality of the electrical
energy across the device must be ensured. This article is an analysis of the
quality of electric energy at the substation of National Hospital of Niamey.
Thereby, the data collection, followed by the data processing and analysis
revealed the parameters characterizing the quality of electrical energy across
the substation. Our studies have shown that the substation is underutilized as
the maximum inrush current is less than half the available current. The current was consumed by the three phases
has resulted in a strong current unbalance
(230A).
However, the current unbalance and the voltage amplitude, are admissible accordingly base on EN50160 standard.
Furthermore, the harmonics voltages present in this medium are in the accepted range
(1.8%) according to IEEE 519 standard. However, the fundamental frequency does
not meet the standard, but the difference obtained has no adverse effect.
References
[1]
Falisoa, R.L. (2013) étude de commandes non linéaires pour réseaux électriques application a un système SMIB. Doctoral Thesis, Antsiranana University, Madagascar, 183 p.
[2]
Ministry of Energy and Petroleum (2015) Système d’information énergétique (SIE), Direction de l’Energie, Ministère de l’énergie et du pétrole. Niamey-Niger, 43 p.
[3]
Nigerien Electricity Company—NIGELEC (2015) Rapport définitif du plan d’actions de réinstallation du projet de renforcement et d’extension des réseaux électriques des villes de Niamey. Dosso, Maradi, Zinder, Tahoua, Agadez et Tillabéri, 120 p.
[4]
Sallam, A.A. and Malik, O.P. (2018) Electric Distribution Systems. John Wiley & Sons, Inc., Canada. https://doi.org/10.1002/9781119509332
[5]
Frelin, W. (2009) Impact de la pollution harmonique sur les matériels de réseau. Doctoral thesis, University of Paris Sud 11, Paris, France, 156 p.
[6]
Jiang, X., Stephen, B., and McArthur, S.D. (2020) Automated Distribution Network Fault Cause Identification with Advanced Similarity Metrics. IEEE Transactions on Power Delivery, 36, 785-793. https://doi.org/10.1109/TPWRD.2020.2993144
[7]
Daouda, A., Madougou, S. and Ibrahim, A.A. (2017) Global Harmonic Rate Assessment in the Electricity Distribution Network in Niamey City: Case Studies of Domestic, Industrial and Hospital Substations. Energy and Power Engineering, 9, 786-801. https://doi.org/10.4236/epe.2017.912049
[8]
Félice, é. and Révilla, P. (2009) Qualité des réseaux électriques et efficacité énergétique. Dunod, Paris, 198 p.
[9]
L’appareillage, B.T. (2009) Règles générales de conception d’une installation électrique (Chapitre A). Schneider Electric—Guide to Electrical Installation.
[10]
Singh, R., & Singh, A. (2010) Aging of Distribution Transformers Due to Harmonics. Proceedings of 14th International Conference on Harmonics and Quality of Power-ICHQP 2010, Bergamo, Italy, 26-29 September 2010.
https://doi.org/10.1109/ICHQP.2010.5625347
[11]
Liu, Y., Zeng, X., Chen, D., Liu, Z., Zhang, X. and Wang, X. (2017) A Novel Three-Phase Imbalanced Overvoltage Suppression Method for Distribution Network. 2017 China International Electrical and Energy Conference (CIEEC), Beijing, China, 25-27 October 2017, 538-542. https://doi.org/10.1109/CIEEC.2017.8388505