The no-evolution, concordance expanding universe cosmology and no-evolution, static universe tired light model are compared against observational data on eight cosmology tests. The no-evolution tired light model is found to make a superior fit on all tests. Any attempts to introduce evolutionary corrections to improve the concordance cosmology fit on one test often worsen its fit on other tests. Light curve data of high redshift gamma ray bursts and quasars fail to support claims for cosmological time dilation due to expansion. Also, the SCP supernova light curve test results are considered to be flawed by selection effect biases. The big bang theory also has difficulty accounting for redshift quantization, for the multi-megaparsec periodicity seen in the distribution of galaxy superclusters, and for the discovery of galaxies at redshifts as high as z ~11.9. In overview, it is concluded that a static universe cosmology must be sought to explain the origin of the universe. One possible choice is a cosmology that predicts nonconservative tired-light redshifting in intergalactic space, the continuous creation of neutrons in space, the rate of matter creation scaling with both celestial body mass and temperature, galaxies growing progressively in size, and changing their morphology in the manner suggested by Jeans and Hubble.
References
[1]
Hickson, P. and Adams, P.J. (1979) Evidence for Cluster Evolution from the q-z Relation. Astrophysical Journal, 234, L91-L95. https://doi.org/10.1086/183116
[2]
LaViolette, P.A. (1986) Is the Universe Really Expanding? Astrophysical Journal 301, 544-553. https://doi.org/10.1086/163922
[3]
Gott, R.J., Gunn, G.E., Schramm, D.N. and Tinsley, B.M. (1974) An Unbound Universe? Astrophysical Journal, 194, 543-553. https://doi.org/10.1086/153273
[4]
Bahcall, N.A. and Fan, X. (1998) A Lightweight Universe? Proceedings of the National Academy of Sciences of the United States of America, 95, 5956-5959. https://doi.org/10.1073/pnas.95.11.5956
[5]
Goldhaber, G., Groom, D.E., Kim, A., Aldering, G., Astier, P., Conley, A., et al. (2001) Timescale Stretch Parameterization of Type I-a Supernova B-Band Light Curves. Astrophysical Journal, 558, 359-368. https://doi.org/10.1086/322460
[6]
Lopez-Corredoira, M. (2010) Angular Size Test on the Expansion of the Universe. International Journal of Modern Physics D, 19, 245-291. https://doi.org/10.1142/S0218271810016397
[7]
Miley, G. (1971) The Radio Structure of Quasars—A Statistical Investigation. Monthly Notices of the Royal Astronomical Society, 152, 477-490. https://doi.org/10.1093/mnras/152.4.477
[8]
Kellermann, K.I. (1972) Radio Galaxies, Quasars, and Cosmology. Astronomical Journal, 77, 531-542. https://doi.org/10.1086/111314
[9]
Ubachukwu, A.A. and Onuora, L.I. (1993) Radio Source Orientation and the Cosmological Interpretation of the Angular Size-Redshift Relation for Double-Lobed Quasars. Astrophysics & Space Science, 209, 169-180. https://doi.org/10.1007/BF00627439
[10]
Hoyle, F. (1959) The Relation of Radio Astronomy to Cosmology. In: Bracewell, R.N., Ed., Radio Astronomy, IAU Symposium No. 9, Stanford University Press, Stanford, 529.
[11]
Sandage, A. (1988) Observational Tests of World Models. Annual Reviews of Astronomy & Astrophysics, 26, 561-630. https://doi.org/10.1146/annurev.aa.26.090188.003021
[12]
Kapahi, V.K. (1987) The Angular Size-Redshift Relation as a Cosmological Tool. In: Hewitt, A., Burbidge, G. and Fang, L.Z., Eds., Observational Cosmology, Vol. 124, Dordrecht, 251-266. https://doi.org/10.1007/978-94-009-3853-3_23
[13]
Andrews, T.B. (2006) Derivation of the Hubble Redshift and the Metric in a Static Universe. AIP Conference Proceedings, 822, 123-143. https://doi.org/10.1063/1.2189129
[14]
Nabokov, N.V. and Baryshev, Y.V. (2008) Classical Cosmological Tests for Galaxies of the Hubble Ultra Deep Field. Astrophysical Bulletin, 63, 244-258. https://doi.org/10.1134/S1990341308030048
[15]
Lerner, E. (2015) Surface Brightness of Galaxies and the Evidence against the Concordance Model. Paper Presented at the Observational Anomalies Challenging the Lambda-CDM Cosmological Model. Special Session 2, European Week of Astronomy and Space Science 2015, La Laguna, 22-26 June 2015, 1339.
[16]
Totani, T., Yoshii, Y., Maihara, T., Iwamuro, F. and Motohara, K. (2001) Near-Infrared Faint Galaxies in the Subaru Deep Field: Comparing the Theory with Observations for Galaxy Counts, Colors, and Size Distributions to K~24.5. Astrophysical Journal, 559, 592-605. https://doi.org/10.1086/322338
[17]
Wright, E.L. (1987) Source Counts in the Chronometric Cosmology. Astrophysical Journal, 313, 551-555. https://doi.org/10.1086/164996
[18]
Tolman, R. (1930) On the Estimation of Distances in a Curved Universe with a Non-Static Line Element. Proceedings of the National Academy of Sciences of the United States of America, 16, 511-520. https://doi.org/10.1073/pnas.16.7.511
[19]
Hubble, E. (1936) Effects of Red Shifts on the Distribution of Nebulae. Astrophysical Journal, 84, 517-554. https://doi.org/10.1086/143782
[20]
Lubin, L.M. and Sandage, A. (2001) The Tolman Surface Brightness Test for the Reality of the Expansion. I. Calibration of the Necessary Local Parameters. Astronomical Journal, 121, 2271-2288. https://doi.org/10.1086/320394
[21]
Lubin, L.M. and Sandage, A. (2001) The Tolman Surface Brightness Test for the Reality of the Expansion. II. The Effect of the Point-Spread Function and Galaxy Ellipticity on the Derived Photometric Parameters. Astronomical Journal, 121, 2289-2300. https://doi.org/10.1086/320401
[22]
Lubin, L.M. and Sandage, A. (2001) The Tolman Surface Brightness Test for the Reality of the Expansion. III. Hubble Space Telescope Profile and Surface Brightness Data for Early-Type Galaxies in Three High-Redshift Clusters. Astronomical Journal, 122, 1071-1083. https://doi.org/10.1086/322133
[23]
Lubin, L.M. and Sandage, A. (2001) The Tolman Surface Brightness Test for the Reality of the Expansion. IV. A Measurement of the Tolman Signal and the Luminosity Evolution of Early-Type Galaxies. Astronomical Journal, 122, 1084-1103. https://doi.org/10.1086/322134
[24]
Aguirre, A. (1999) Dust versus Cosmic Acceleration. Astrophysical Journal, 512, L19-L22. https://doi.org/10.1086/311862
[25]
Aguirre, A. (1999) Intergalactic Dust and Observations of Type IA Supernovae. Astrophysical Journal, 525, 583-593. https://doi.org/10.1086/307945
[26]
Goobar, A., Bergström, L. and Mörtsell, E. (2002) Measuring the Properties of Extragalactic Dust and Implications for the Hubble Diagram. Astronomy & Astrophysics, 384, 1-10. https://doi.org/10.1051/0004-6361:20020002
[27]
Rowan-Robinson, M. (2002) Do type Ia Supernovae Prove Λ > 0? Monthly Notices of the Royal Astronomical Society, 332, 352-360. https://doi.org/10.1046/j.1365-8711.2002.05299.x
[28]
Kristian, J., Sandage, A. and Westphal, J.A. (1978) The Extension of the Hubble Diagram. II. New Redshifts and Photometry of Very Distant Galaxy Clusters: First Indication of a Deviation of the Hubble Diagram from a Straight Line. Astrophysical Journal, 221, 383-394. https://doi.org/10.1086/156038
[29]
Postman, M. and Lauer, T.R. (1995) Brightest Cluster Galaxies as Standard Candles. Astrophysical Journal, 440, 28-47. https://doi.org/10.1086/175245
[30]
LaViolette, P. (2002) Letter Correspondence with A. Sandage, 12/4/01 and 2/28/02.
[31]
Sandage, A. (2002) Letter Correspondence with P. LaViolette, 3/27/02.
[32]
Lerner, E.J. (2006) Evidence for a Non-Expanding Universe: Surface Brightness Data from HUDF. AIP Conference Proceedings, 822, 60-74. https://doi.org/10.1063/1.2189123
[33]
Crawford, D.F. (2011) Observational Evidence Favors a Static Universe. Journal of Cosmology, 13, 3875-3946. Eprint: arxiv: 1009.0953. 3875, arXiv: 1009.0953.
[34]
López-Corredoira, M. (2017) Tests and Problems of the Standard Model in Cosmology. Foundations of Physics, 47, 711-768. https://doi.org/10.1007/s10701-017-0073-8
[35]
Lerner, E.J., Falomo, R. and Scarpa, R. (2014) UV Surface Brightness of Galaxies from the Local Universe to z~5. International Journal of Modern Physics D, 23, Article ID: 1450058. https://doi.org/10.1142/S0218271814500588
[36]
Pahre, M.A., Djorgovski, S.G. and de Carvalho, R.R. (1996) A Tolman Surface Brightness Test for Universal Expansion and the Evolution of Elliptical Galaxies in Distant Clusters. Astrophysical Journal Letters, 456, L79-L82. https://doi.org/10.1086/309872
[37]
Andrews, T.B. (2006) Falsification of the Expanding Universe Model. AIP Conference Proceedings, 822, 3-22. https://doi.org/10.1063/1.2189118
[38]
Jaakkola, T., Moles, M. and Vigier, J.P. (1979) Empirical Status in Cosmology and the Nature of Redshifts. Astronomische Nachrichten, 300, 229-238. https://doi.org/10.1002/asna.19793000503
[39]
Geller, M.J. and Peebles, P.J.E. (1972) Test of the Expanding Universe Postulate. Astrophysical Journal, 174, 1-5. https://doi.org/10.1086/151462
[40]
Marosi, L.A. (2014) Hubble Diagram Test of 280 Supernovae Redshift Data. Journal of Modern Physics, 5, 29-33. http://doi.org/10.4236/jmp.2014.51005
[41]
Marosi, L.A. (2019) Extended Hubble Diagram on the Basis of Gamma Ray Bursts Including the High Redshift Range of z =0.0331-8.1. International Journal of Astronomy & Astrophysics, 9, 1-11. https://doi.org/10.4236/ijaa.2019.91001
[42]
Sandage, A., Tammann, G.A., Saha, A., Reindl, B., Macchetto, F.D. and Panagia, N. (2006) The Hubble Constant: A Summary of the Hubble Space Telescope Program for the luminosity Calibration of Type Ia Supernovae by Means of Cepheids. Astrophysical Journal, 653, 843-860. https://doi.org/10.1086/508853
[43]
Tammann, G.A. and Reindl, B. (2013) Alan Sandage and the Distance Scale. Proceedings of the International Astronomical Union, 8, 13-25. https://doi.org/10.1017/S1743921312021059
Freedman, W.L., et al. (2019) The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch. Astrophysical Journal, 882, 34 (29 p.). https://doi.org/10.3847/1538-4357/ab2f73
[46]
Riess, A.G., Casertano, S., Yuan, W., Macri, L.M. and Scolnic, D. (2019) Large Magellanic Cloud Cepheid standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astrophysical Journal, 876, Article No. 85, 13 p. https://doi.org/10.3847/1538-4357/ab1422
[47]
Lombriser, L. (2020) Consistency of the Local Hubble Constant with the Cosmic Microwave Background. Physics Letters B, 803, Article ID: 135303. https://doi.org/10.1016/j.physletb.2020.135303
[48]
Ding, Q., Nakama, T. and Wang, Y. (2020) A Gigaparsec-Scale Local Void and the Hubble Tension. Science China Physics, Mechanics & Astronomy, 63, Article No. 290403. https://doi.org/10.1007/s11433-020-1531-0
[49]
Sokolov, V.V. (2001) On the GRB Progenitors: Possible Consequences for Supernovae Connection with Gamma-Ray Bursts. Bulletin of the Special Astrophysical Observatory, 51, Article No. 38. arXiv: astro-ph/0107399.
[50]
Kocevski, D. and Petrosian, V. (2013) On the Lack of Time Dilation Signatures in Gamma-Ray Burst Light Curves. Astrophysical Journal, 765, Article No. 116, 7 p. arXiv: 1110.6175. https://doi.org/10.1088/0004-637X/765/2/116
[51]
Crawford, D.F. (2009) No Evidence of Time Dilation in Gamma-Ray Burst Data. arXiv: 0901.4169.
[52]
Hawkins, M. (2010) On Time Dilation in Quasar Light Curves. Monthly Notices of the Royal Astronomical Society, 405, 1940-1946. https://doi.org/10.1111/j.1365-2966.2010.16581.x
[53]
Phillips, M.M. (1993) The Absolute Magnitudes of Type IA Supernovae. Astrophysical Journal, 413, L105-L108. https://doi.org/10.1086/186970
[54]
Hamuy, M., Phillips, M.M., Suntzeff, N.B., Schommer, R.A., Maza, J., Smith, R.C., et al. (1996) The Morphology of Type IA Supernovae Light Curves. Astronomical Journal, 112, 2438-2447. https://doi.org/10.1086/118193
[55]
Quimby, R.M., Kulkarni, S.R., Kasliwal, M.M., Gal-Yam, A., Arcavi, I., Sullivan, M., et al. (2011) Hydrogen-Poor Super-Luminous Stellar Explosions. Nature, 474, 487-489. https://doi.org/10.1038/nature10095
[56]
Crawford, D.F. (1999) Curvaturepressurein a Cosmology with a Tired-Light Redshift. Australian Journal of Physics, 52, 753-777. https://doi.org/10.1071/PH98065
[57]
Masreliez, J. (2002) Accelerating Universe or Tired Light?
[58]
Tifft, W.G. (1976) Discrete States of Redshift and Galaxy Dynamics. I. Internal Motions in Single Galaxies. Astrophysical Journal, 206, 38-56. https://doi.org/10.1086/154354
[59]
Tifft, W.G. (1978) The Absolute Solar Motion and the Discrete Redshift. Astrophysical Journal, 221, 756-775. https://doi.org/10.1086/156079
[60]
Tifft, W.G. (1980) Periodicity in the Redshift Intervals for Double Galaxies. Astrophysical Journal, 236, 70-74. https://doi.org/10.1086/157719
[61]
Tifft, W.G. (1982) Quantum Effects in the Redshift Intervals for Double Galaxies. Astrophysical Journal, 257, 442-449. https://doi.org/10.1086/160002
[62]
Tifft, W.G. (1982) Double Galaxy Investigations. II. The Redshift Periodicity in Optically Observed Pairs. Astrophysical Journal, 262, 44-47. https://doi.org/10.1086/160394
[63]
Cocke, W.J. and Tifft, W.G. (1983) A Theoretical Framework for Quantized Redshifts and Uncertainty in Cosmology. Astrophysical Letters, 23, 239-249.
[64]
Cocke, W.J. and Tifft, W.G. (1983) Redshift Quantization in Compact Groups of Galaxies. Astrophysical Journal, 268, 56-59. https://doi.org/10.1086/160928
[65]
Tifft, W.G. and Cocke, W.J. (1984) Global Redshift Quantization. Astrophysical Journal, 287, 492-502. https://doi.org/10.1086/162708
[66]
Tifft, W.G. (1991) Properties of the Redshift III: Temporal Variation. Astrophysical Journal, 382, 396-415. https://doi.org/10.1086/170730
[67]
Guthrie, B.N.G. and Napier, W. (1996) Redshift Periodicity in the Local Supercluster. Astronomy & Astrophysics, 310, 353-370.
[68]
Napier, W. and Guthrie, B.N.G. (1997) Quantized Redshifts: A Status Report. Journal of Astrophysics & Astronomy, 18, 455-463. https://doi.org/10.1007/BF02709337
[69]
Narlikar, J. (1977) Two Astrophysical Applications of Conformal Gravity. Annals of Physics, 107, 325-336. https://doi.org/10.1016/0003-4916(77)90214-7
[70]
Arp, H. (1987) Quasars, Redshifts, and Controversies. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511564857
[71]
Arp, H. (1986) A Corrected Velocity for the Local Standard of Rest by Fitting to the Mean Redshift of Local Group Galaxies. Astronomy & Astrophysics, 156, 207-212.
[72]
Broadhurst, T.J., Ellis, R.S., Koo, D.C. and Szalay, A.S. (1990) Large-Scale Distribution of Galaxies at the Galactic Poles. Nature, 343, 726-728. https://doi.org/10.1038/343726a0
[73]
Oesch, P.A., Brammer, G., Brammer, G., van Dokkum, P.G., Illingworth, G.D., Bouwens, R.J., et al. (2016) A Remarkably Luminous Galaxy at Z=11.1. Measured with Hubble Space Telescope Grism Spectroscopy. Astrophysical Journal, 819, Article No. 129, arXiv: 1603.00461. https://doi.org/10.3847/0004-637X/819/2/129
[74]
Ellis, R.S., McLure, R.J., Dunlop, J.S., Robertson, B.E., Ono, Y., Schenker, M., A., et al. (2013) The Abundance of Star-Forming Galaxies in the Redshift Range 8.5 to 12: New Results from the 2012 Hubble Ultra Deep Field Campaign. Astrophysical Journal Letters, 763, Article No. L7, arXiv: 1211.6804. https://doi.org/10.1088/2041-8205/763/1/L7
[75]
Zwicky, F. (1929) On the Red Shift of Spectral Lines through Interstellar Space. Proceedings of the National Academy of Sciences of the United States of America, 15, 773-779. https://doi.org/10.1073/pnas.15.10.773
[76]
Pecker, J.-C. and Vigier, J.-P. (1987) A Possible Tired-Light Mechanism. Proceedings of the 124th Symposium of the International Astronomical Union, Beijing, 25-30 August 1986, 507-511. https://doi.org/10.1007/978-94-009-3853-3_48
[77]
Marmet, P. (1981) A New Non-Doppler Redshift. Universite Laval, Department of Physics, Quebec, 64 p.
[78]
Marmet, P. (1988) A New Non-Doppler Redshift. Physics Essays, 1, 24-32. https://doi.org/10.4006/1.3033412
[79]
Marmet, P. and Reber, G. (1989) Cosmic Matter and the Nonexpanding Universe. IEEE Transactions of Plasma Science, 17, 264-269. https://doi.org/10.1109/27.24634
[80]
Zheng, Y. (2013) The Propagation of Photons in the Dilute Ionized Gas. arXiv: 1305.0427.
[81]
Maxwell, J.C. (1954) A Treatiseon Electricity and Magnetism. Vol. II, Dover, New York.
[82]
Monti, R. (1988) The Electric Conductivity of Background Space. In: Kostro, L., Posiewnik, A., Pykacz, J. and Zukowski, M., Eds., Problems in Quantum Physics, Gdansk’87, World Scientific, Teaneck, 640.
[83]
von Nernst, W. (1921) The Structure of the Universe in Light of Our Research. Jules Springer, Berlin.
[84]
von. Nernst, W. (1938) Additional Test of the Assumption of a Stationary State in the Universe. Zeitschrift fur Physik, 106, 633-661. https://doi.org/10.1007/BF01339902
[85]
Monti, R. (1986) Albert Einstein and Walther Nernst: Comparative Cosmology. SeaGreen, 4, 32-36.
[86]
Vigier, J.-P. (1990) Evidence for Nonzero Mass Photons Associated with a Vacuum-Induced Dissipative Red-Shift Mechanism. IEEE Transactions of Plasma Science, 18, 64-72. https://doi.org/10.1109/27.45506
[87]
LaViolette, P.A. (1985) An Introduction to Subquantum Kinetics. III. The Cosmology of Subquantum Kinetics. International Journal of General Systems, 11, 329-345. https://doi.org/10.1080/03081078508934920
[88]
LaViolette, P.A. (1985) An Introduction to Subquantum Kinetics. I. An Overview of the Methodology. International Journal of General Systems, 11, 281-293. https://doi.org/10.1080/03081078508934918
[89]
LaViolette, P.A. (1985) An Introduction to Subquantum Kinetics. II. An Open Systems Description of Particles and Fields. International Journal of General Systems, 11, 295-328. https://doi.org/10.1080/03081078508934919
[90]
LaViolette, P.A. (2008) The Electric Charge and Magnetization Distribution of the Nucleon: Evidence of a Subatomic Turing Wave Pattern. International Journal of General Systems, 37, 649-676. https://doi.org/10.1080/03081070802367457 https://starburstfound.org/downloads/physics/nucleon.pdf
[91]
LaViolette, P.A. (2012) Subquantum Kinetics: A Systems Approach to Physics and Cosmology. 4th Edition, Starlane Publications, Niskayuna.
[92]
LaViolette, P.A. (2012) The Cosmic Ether: Introduction to Subquantum Kinetics. Physics Procedia, 38, 326-349. https://doi.org/10.1016/j.phpro.2012.08.032
[93]
Pulver, M. and LaViolette, P.A. (2013) Stationary Dissipative Solitons of Model G. International Journal of General Systems, 42, 519-541. https://doi.org/10.1080/03081079.2013.776313
[94]
Gmitro, J.I. and Scriven, L.E. (1966) A Physiochemical Basis for Pattern and Rhythm. In: Warren, K., Ed., Intracellular Transport, Academic Press, New York, 221-255. https://doi.org/10.1016/B978-1-4831-9872-9.50016-0
[95]
LaViolette, P.A. (2021) The Origin of Gravity and Its Effects: According to the Subquantum Kinetics Paradigm. In: Krasnoholovets, V., Ed., The Origin of Gravity from the First Principles, Nova Science Publishers, Hauppauge. (In Press) https://starburstfound.org/downloads/physics/Origin-Gravity-Its-Effects.pdf
[96]
LaViolette, P.A. (2021) The Nonvelocity Spectral Shift. Submitted.
[97]
Jeans, J. (1919) Problems of Cosmogony and Stellar Dynamics. Cambridge University Press, London.
[98]
Jeans, J. (1928) Astronomy and Cosmogony. Cambridge University Press, London.
McCrea, W.H. (1964) Continual Creation. Monthly Notices of the Royal Astronomical Society, 128, 335-344. https://doi.org/10.1093/mnras/128.4.335
[101]
Ambartsumian, V.A. (1958) On the Evolution of Galaxies. Proceedings of the 11th Solvay Conference: Structure and Evolution of the Universe, Solvay, 1958, Institute Internationale de Physique, 241-249.
[102]
Ambartsumian, V.A. (1965) On the Nuclei of Galaxies and Their Activity. Proceedings of the 13th Solvay Conference on Physics: The Structure and Evolution of Galaxies, Brussels, September 1964, Interscience Publishers, London, 1-16.
[103]
Sérsic, J.L. (1968) On the Formation of Galaxies by Fragmentation. Bulletin of the Astronomical Institute of Czechoslovakia, 19, 105-110.
[104]
Arp, H. (1998) The Origin of Companion Galaxies. Astrophysical Journal, 496, 661-669. https://doi.org/10.1086/305412
[105]
Arp, H., Burbidge, E.M., Chu, Y. and Zhu, X. (2001) X-Ray-Emitting QSOs Ejected from Arp 220. Astrophysical Journal, 553, L11-L13. https://doi.org/10.1086/320499
[106]
LaViolette, P.A. (1994) The Matter of Creation. Physics Essays, 7, 1-8. https://starburstfound.org/downloads/physics/MOC.pdf
[107]
Kelly, J.J. (2002) Nucleon Charge and Magnetization Densities from Sachs form Factors. Physical Review C, 66, Article ID: 065203. https://doi.org/10.1103/PhysRevC.66.065203
[108]
Burbidge, G. and Hoyle, F. (1998) The Origin of Helium and Other Light Elements. Astrophysical Journal, 509, L1-L3. https://doi.org/10.1086/311756
[109]
Crawford, D.F. (1987) Diffuse Background X Rays and the Density of the Intergalactic Medium. Australian Journal of Physics, 40, 459-464. https://doi.org/10.1071/PH870459
[110]
Arp, H., Burbidge, G., Hoyle, F. Wickramasinghe, N. and Narlikar, J. (1990) The Extragalactic Universe: An Alternative View. Nature, 346, 807-812. https://doi.org/10.1038/346807a0
[111]
LaViolette, P.A. (1992) The Planetary-Stellar Mass-Luminosity Relation: Possible Evidence of Energy Nonconservation? Physics Essays, 5, 536-543.