Background: Urban air pollution contributes to lung and cardiovascular system dysfunction, making it a major concern for human health. Its impact on skin integrity, associated with increased occurrence of atopic dermatitis, is now recognized, but its cellular mechanisms remain poorly understood. Objective: In the present study we aimed at establishing the impact of urban pollutant on mitochondrial dynamics and bioenergetics using the HaCaT cell model. We also sought to establish the protective effect of ECH-5195 (red Panax ginseng extract), standardized in ginsenosides, in reversing pollution-induced mitochondrial defects. Methods: Urban pollution exposure was mimicked by 1 h exposure of HaCaT cells with standardized atmospheric particulate matter containing PAHs, nitro-PAHs, PCB congeners, and chlorinated pesticides with a mean particulate diameter of 5.85 μm (SRM1648). Results: The presence of urban pollutant in the cultures increased the prevalence of hyperfission by 1.41-fold (p = 0.023) and fission by 1.35 fold (p = 0.006) in the reticular mitochondrial network. ECH-5195 reduced both pollution-induced hyperfission by 0.54-fold (p = 0.004) and fission by 0.68-fold (p = 0.0006) normalizing the mitochondrial reticular network. Pollution exposure was associated with a significant reduction of basal OCR and increased lactate production, pushing the cell to rely on glycolysis for ATP production. When ECH-5195 was used, OCR was significantly increased, and the glycolytic contribution to ATP production was reduced while both oxidative phosphorylation and mitochondrial respiration were increased demonstrating mitochondrial re-engagement in ATP production. Conclusions: Pollution exposure was disruptive for both the mitochondrial network dynamics and mitochondrial respiration. Ginsenosides in ECH-5195 efficiently protected both from pollution-induced defects.
References
[1]
WHO (n.d.) Ambient Air Pollution. WHO, Geneva. http://www.who.int/airpollution/ambient/en/
[2]
WHO (n.d.) WHO Global Urban Ambient Air Pollution Database (Update 2016). WHO, Geneva. http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/
[3]
Araviiskaia, E., Berardesca, E., Bieber, T., Gontijo, G., Viera, M.S., Marrot, L., Chuberre, B. and Dreno, B. (2019) The Impact of Airborne Pollution on Skin. Journal of the European Academy of Dermatology and Venereology, 33, 1496-1505. https://doi.org/10.1111/jdv.15583
[4]
Weschler, C.J., Bekö, G., Koch, H.M., Salthammer, T., Schripp, T., Toftum, J. and Clausen, G. (2015) Transdermal Uptake of Diethyl Phthalate and Di(n-butyl) Phthalate Directly from Air: Experimental Verification. Environmental Health Perspectives, 123, 928-934. https://doi.org/10.1289/ehp.1409151
[5]
Mancebo, S.E. and Wang, S.Q. (2015) Recognizing the Impact of Ambient Air Pollution on Skin Health. Journal of the European Academy of Dermatology and Venereology, 29, 2326-2332. https://doi.org/10.1111/jdv.13250
[6]
Krutmann, J., Moyal, D., Liu, W., Kandahari, S., Lee, G.-S., Nopadon, N., Xiang, L.F. and Seité, S. (2017) Pollution and Acne: Is There a Link? Clinical, Cosmetic and Investigational Dermatology, 10, 199-204. https://doi.org/10.2147/CCID.S131323
[7]
Liu, W., Pan, X., Vierkötter, A., Guo, Q., Wang, X., Wang, Q., Seité, S., Moyal, D., Schikowski, T. and Krutmann, J. (2018) A Time-Series Study of the Effect of Air Pollution on Outpatient Visits for Acne Vulgaris in Beijing. Skin Pharmacology and Physiology, 31, 107-113. https://doi.org/10.1159/000484482
[8]
Hendricks, A.J., Eichenfield, L.F. and Shi, V.Y. (2019) The Impact of Airborne Pollution on Atopic Dermatitis: A Literature Review. British Journal of Dermatology, 183, 16-23.
[9]
Vierkötter, A., Schikowski, T., Ranft, U., Sugiri, D., Matsui, M., Krämer, U. and Krutmann, J. (2010) Airborne Particle Exposure and Extrinsic Skin Aging. Journal of Investigative Dermatology, 130, 2719-2726. https://doi.org/10.1038/jid.2010.204
[10]
Puri, P., Nandar, S.K., Kathuria, S. and Ramesh, V. (2017) Effects of Air Pollution on the Skin: A Review. Indian Journal of Dermatology, Venereology and Leprology, 83, 415-423. https://doi.org/10.4103/0378-6323.199579
[11]
Schikowski, T. and Krutmann, J. (2019) Luftverschmutzung (Feinstaub, Stickstoffdioxid) und Hautalterung. [Air Pollution (Particulate Matter and Nitrogen Dioxide) and Skin Aging.] Der Hautarzt, 70, 158-162. https://doi.org/10.1007/s00105-018-4338-8
[12]
Park, S.-Y., Byun, E.J., Lee, J.D., Kim, S. and Kim, H.S. (2018) Air Pollution, Autophagy, and Skin Aging: Impact of Particulate Matter (PM10) on Human Dermal Fibroblasts. International Journal of Molecular Sciences, 19, 2727. https://doi.org/10.3390/ijms19092727
[13]
Wong, J.Y.Y., Hu, W., Downward, G.S., Seow, W.J., Bassig, B.A., Ji, B.-T., Wei, F., Wu, G., Li, J., He, J., Liu, C.-S., Cheng, W.-L., Huang, Y., Yang, K., Chen, Y., Rothman, N., Vermeulen, R.C. and Lan, Q. (2017) Personal Exposure to Fine Particulate Matter and Benzo[a]pyrene from Indoor Air Pollution and Leukocyte Mitochondrial DNA Copy Number in Rural China. Carcinogenesis, 38, 893-899. https://doi.org/10.1093/carcin/bgx068
[14]
Pieters, N., Janssen, B.G., Dewitte, H., Cox, B., Cuypers, A., Lefebvre, W., Smeets, K., Vanpoucke, C., Plusquin, M. and Nawrot, T.S. (2016) Biomolecular Markers within the Core Axis of Aging and Particulate Air Pollution Exposure in the Elderly: A Cross-Sectional Study. Environmental Health Perspectives, 124, 943-950. https://doi.org/10.1289/ehp.1509728
[15]
Xia, Y., Chen, R., Wang, C., Cai, J., Wang, L., Zhao, Z., Qian, J. and Kan, H. (2015) Ambient Air Pollution, Blood Mitochondrial DNA Copy Number and Telomere Length in a Panel of Diabetes Patients. Inhalation Toxicology, 27, 481-487. https://doi.org/10.3109/08958378.2015.1075090
[16]
Hou, L., Zhang, X., Dioni, L., Barretta, F., Dou, C., Zheng, Y., Hoxha, M., Bertazzi, P.A., Schwartz, J., Wu, S., Wang, S. and Baccarelli, A.A. (2013) Inhalable Particulate Matter and Mitochondrial DNA Copy Number in Highly Exposed Individuals in Beijing, China: A Repeated-Measure Study. Particle and Fibre Toxicology, 10, Article No. 17. https://doi.org/10.1186/1743-8977-10-17
[17]
Morano, K.A., Grant, C.M. and Moye-Rowley, W.S. (2012) The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae. Genetics, 190, 1157-1195. https://doi.org/10.1534/genetics.111.128033
[18]
Velali, E., Papachristou, E., Pantazaki, A., Besis, A., Samara, C., Labrianidis, C. and Lialiaris, T. (2018) In Vitro Cellular Toxicity Induced by Extractable Organic Fractions of Particles Exhausted from Urban Combustion Sources—Role of PAHs. Environmental Pollution, 243, 1166-1176. https://doi.org/10.1016/j.envpol.2018.09.075
[19]
Pardo, M., Kuperman, Y., Levin, L., Rudich, A., Haim, Y., Schauer, J.J., Chen, A. and Rudich, Y. (2018) Exposure to Air Pollution Interacts with Obesogenic Nutrition to Induce Tissue-Specific Response Patterns. Environmental Pollution, 239, 532-543. https://doi.org/10.1016/j.envpol.2018.04.048
[20]
Pardo, M., Xu, F., Shemesh, M., Qiu, X., Barak, Y., Zhu, T. and Rudich, Y. (2019) Nrf2 Protects against Diverse PM2.5 Components-Induced Mitochondrial Oxidative Damage in Lung Cells. Science of the Total Environment, 669, 303-313. https://doi.org/10.1016/j.scitotenv.2019.01.436
[21]
Parrado, C., Mercado-Saenz, S., Perez-Davo, A., Gilaberte, Y., Gonzalez, S. and Juarranz, A. (2019) Environmental Stressors on Skin Aging. Mechanistic Insights. Frontiers in Pharmacology, 10, 759. https://doi.org/10.3389/fphar.2019.00759
[22]
Chan, D.C. (2012) Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health. Annual Review of Genetics, 46, 265-287. https://doi.org/10.1146/annurev-genet-110410-132529
[23]
Strich, R. and Cooper, K.F. (2014) The Dual Role of Cyclin C Connects Stress Regulated Gene Expression to Mitochondrial Dynamics. Microbial Cell, 1, 318-324. https://doi.org/10.15698/mic2014.10.169
[24]
Youle, R.J. and van der Bliek, A.M. (2012) Mitochondrial Fission, Fusion, and Stress. Science, 337, 1062-1065. https://doi.org/10.1126/science.1219855
[25]
Nishimura, A., Shimauchi, T., Tanaka, T., Shimoda, K., Toyama, T., Kitajima, N., Ishikawa, T., Shindo, N., Numaga-Tomita, T., Yasuda, S., Sato, Y., Kuwahara, K., Kumagai, Y., Akaike, T., Ide, T., Ojida, A., Mori, Y. and Nishida, M. (2018) Hypoxia-Induced Interaction of Filamin with Drp1 Causes Mitochondrial Hyperfission-Associated Myocardial Senescence. Science Signaling, 11, eaat5185. https://doi.org/10.1126/scisignal.aat5185
[26]
Compagnone, N.A. (2010) Method to Predict Toxicity Using the Analysis of Dynamic Organelle Behaviour. US patent No. 2,010,311,101. https://v3.espacenet.com/textdoc?DB=EPODOC&IDX=US2010311101
[27]
Nishimura, A., Shimoda, K., Tanaka, T., Toyama, T., Nishiyama, K., Shinkai, Y., Numaga-Tomita, T., Yamazaki, D., Kanda, Y., Akaike, T., Kumagai, Y. and Nishida, M. (2019) Depolysulfidation of Drp1 Induced by Low-Dose Methylmercury Exposure Increases Cardiac Vulnerability to Hemodynamic Overload. Science Signaling, 12, eaaw1920. https://doi.org/10.1126/scisignal.aaw1920
[28]
Baker, N., Patel, J. and Khacho, M. (2019) Linking Mitochondrial Dynamics, Cristae Remodeling and Supercomplex Formation: How Mitochondrial Structure Can Regulate Bioenergetics. Mitochondrion, 49, 259-268. https://doi.org/10.1016/j.mito.2019.06.003
Seely, D., Dugoua, J.-J., Perri, D., Mills, E. and Koren, G. (2008) Safety and Efficacy of Panax ginseng during Pregnancy and Lactation. Canadian Journal of Clinical Pharmacology, 15, e87-e94.
[31]
Bae, H.J., Chung, S.I., Lee, S.C. and Kang, M.Y. (2014) Influence of Aging Process on the Bioactive Components and Antioxidant Activity of Ginseng (Panax ginseng L.). Journal of Food Science, 79, H2127-H2131. https://doi.org/10.1111/1750-3841.12640
[32]
Tang, W. and Eisenbrand, G. (1992) Panax ginseng C. A. Mey. In: Chinese Drugs of Plant Origin, Springer, Heidelberg, Berlin, 711-737. https://doi.org/10.1007/978-3-642-73739-8_91
[33]
Yun, T.K. (2001) Brief Introduction of Panax ginseng C. A. Meyer. Journal of Korean Medical Science, 16, S3-S5. https://doi.org/10.3346/jkms.2001.16.S.S3
[34]
Lee, S.M., Bae, B.S., Park, H.-W., Ahn, N.-G., Cho, B.-G., Cho, Y.-L. and Kwak, Y.-S. (2015) Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, Preparation Method, and Chemical Composition. Journal of Ginseng Research, 39, 384-391. https://doi.org/10.1016/j.jgr.2015.04.009
[35]
Choi, K.-T. (2008) Botanical Characteristics, Pharmacological Effects and Medicinal Components of Korean Panax ginseng C. A. Meyer. Acta Pharmacologica Sinica, 29, 1109-1118. https://doi.org/10.1111/j.1745-7254.2008.00869.x
[36]
De Vos, K.J. and Sheetz, M.P. (2007) Visualization and Quantification of Mitochondrial Dynamics in Living Animal Cells. Methods in Cell Biology, 80, 627-682. https://doi.org/10.1016/S0091-679X(06)80030-0
[37]
Song, W., Bossy, B., Martin, O.J., Hicks, A., Lubitz, S., Knott, A.B. and Bossy-Wetzel, E. (2008) Assessing Mitochondrial Morphology and Dynamics Using Fluorescence Wide-Field Microscopy and 3D Image Processing. Methods, 46, 295-303. https://doi.org/10.1016/j.ymeth.2008.10.003
[38]
Crabtree, H.G. (1929) Observations on the Carbohydrate Metabolism of Tumours. Biochemical Journal, 23, 536-545. https://doi.org/10.1042/bj0230536
[39]
Guo, Z., Hong, Z., Dong, W., Deng, C., Zhao, R., Xu, J., Zhuang, G. and Zhang, R. (2017) PM2.5-Induced Oxidative Stress and Mitochondrial Damage in the Nasal Mucosa of Rats. International Journal of Environmental Research and Public Health, 14, 134. https://doi.org/10.3390/ijerph14020134
[40]
Meyer, J.N., Leuthner, T.C. and Luz, A.L. (2017) Mitochondrial Fusion, Fission, and Mitochondrial Toxicity. Toxicology, 391, 42-53. https://doi.org/10.1016/j.tox.2017.07.019
[41]
Kowaltowski, A.J., Menezes-Filho, S.L., Assali, E.A., Gonçalves, I.G., Cabral-Costa, J.V., Abreu, P., Miller, N., Nolasco, P., Laurindo, F.R.M., Bruni-Cardoso, A. and Shirihai, O. (2019) Mitochondrial Morphology Regulates Organellar Ca2+ Uptake and Changes Cellular Ca2+ Homeostasis. The FASEB Journal, 33, 13176-13188. https://doi.org/10.1101/624981
[42]
Cooper, K.F., Khakhina, S., Kim, S.K. and Strich, R. (2014) Stress-Induced Nuclear-to-Cytoplasmic Translocation of Cyclin C Promotes Mitochondrial Fission in Yeast. Developmental Cell, 28, 161-173. https://doi.org/10.1016/j.devcel.2013.12.009
[43]
Ganesan, V., Willis, S.D., Chang, K.-T., Beluch, S., Cooper, K.F. and Strich, R. (2019) Cyclin C Directly Stimulates Drp1 GTP Affinity to Mediate Stress-Induced Mitochondrial Hyperfission. Molecular Biology of the Cell, 30, 302-311. https://doi.org/10.1091/mbc.E18-07-0463
[44]
Wang, K., Yan, R., Cooper, K.F. and Strich, R. (2015) Cyclin C Mediates Stress-Induced Mitochondrial Fission and Apoptosis. Molecular Biology of the Cell, 26, 1030-1043. https://doi.org/10.1091/mbc.E14-08-1315
[45]
Boyer, M.J. and Eguchi, S. (2018) A Cytoskeletal Anchor Connects Ischemic Mitochondrial Fission to Myocardial Senescence. Science Signaling, 11, eaav3267. https://doi.org/10.1126/scisignal.aav3267