全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Classification of Abandoned Areas for Solar Energy Projects Using Artificial Intelligence and Quantum Mechanics

DOI: 10.4236/jgis.2021.133018, PP. 318-339

Keywords: Solar Energy, Soil Reuse, Artificial Neural Networks, Quantum-Behaved Particle Swarm Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increasing demand for energy has intensified recently, requiring alternative sources to fossil fuels, which have become economically and environmentally unfeasible. On the other hand, the increasing land occupation in recent centuries is a growing problem, demanding greater efficiency, particularly in the reuse of abandoned areas, which has become an alternative. An interesting alternative would be installing energy facilities like solar, wind, biomass, and geothermal, in these areas. The objective of this paper is to develop a classification methodology, based on Artificial Intelligence (AI) and Quantum Theory (QT), to automatically carry out the classification of abandoned areas suitable for the settlement of these power plants. Artificial Neural Networks (ANNs) improved by the hybrid algorithm Quantum-behaved Particle Swarm Optimization (QPSO) together with the Levenberg-Marquardt Algorithm (LMA) were used for the classification task. In terms of Mean Squared Error (MSE), the QPSO-LMA approach achieved a decrease of 19.6% in relation to the classical LMA training with random initial weights. Moreover, the model’s accuracy showed an increase of 7.3% for the QPSO-LMA over the LMA. To validate this new approach, it was also tested on six different datasets available in the UCI Machine Learning Repository and seven classical techniques established in the literature. For the problem of installing photovoltaic plants in abandoned areas, the knowledge acquired with the solar dataset can be extrapolated to other regions.

References

[1]  U.S. Energy Information Administration (2017) International Energy Outlook 2017.
[2]  Griffin, P.W., Hammond, G.P. and Norman, J.B. (2018) Industrial Energy Use and Carbon Emissions Reduction in the Chemicals Sector: A UK Perspective. Applied Energy, 227, 587-602.
https://doi.org/10.1016/j.apenergy.2017.08.010
[3]  Almeida, C.M.V.B., Agostinho, F., Huisingh, D. and Giannetti, B.F. (2017) Cleaner Production towards a Sustainable Transition. Journal of Cleaner Production, 142, 1-7.
https://doi.org/10.1016/j.jclepro.2016.10.094
[4]  Cadez, S. and Czerny, A. (2016) Climate Change Mitigation Strategies in Carbon-Intensive Firms. Journal of Cleaner Production, 112, 4132-4143.
https://doi.org/10.1016/j.jclepro.2015.07.099
[5]  Perea-Moreno, A.-J., García-Cruz, A., Novas, N. and Manzano-Agugliaro, F. (2017) Rooftop Analysis for Solar Flat Plate Collector Assessment to Achieving Sustainability Energy. Journal of Cleaner Production, 148, 545-554.
https://doi.org/10.1016/j.jclepro.2017.02.019
[6]  Manan, Z.A., Mohd Nawi, W.N.R., Wan Alwi, S.R. and Klemes, J.J. (2017) Advances in Process Integration Research for CO2 Emission Reduction—A Review. Journal of Cleaner Production, 167, 1-13.
https://doi.org/10.1016/j.jclepro.2017.08.138
[7]  Lambin, E.F. and Meyfroidt, P. (2011) Global Land Use Change, Economic Globalization, and the Looming Land Scarcity. The Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
https://doi.org/10.1073/pnas.1100480108
[8]  Morio, M., Schadler, S. and Finkel, M. (2013) Applying a Multi-Criteria Genetic Algorithm Framework for Brownfield Reuse Optimization: Improving Redevelopment Options Based on Stakeholder Preferences. Journal of Environmental Management, 130, 331-346.
https://doi.org/10.1016/j.jenvman.2013.09.002
[9]  Goldewijk, K.K., Beusen, A., Doelman, J. and Stehfest, E. (2017) Anthropogenic Land Use Estimates for the Holocene-HYDE 3.2. Earth System Science Data, 9, 927-953.
https://doi.org/10.5194/essd-9-927-2017
[10]  Nuissl, H. and Schroeter-Schlaack, C. (2009) On the Economic Approach to the Containment of Land Consumption. Environmental Science and Policy, 12, 270-280.
https://doi.org/10.1016/j.envsci.2009.01.008
[11]  Apostolidis, N. and Hutton, N. (2006) Integrated Water Management in Brownfield Sites—More Opportunities than You Think. Desalination, 188, 169-175.
https://doi.org/10.1016/j.desal.2005.04.114
[12]  Cao, K. and Guan, H. (2007) Brownfield Redevelopment toward Sustainable Urban Land Use in China. Chinese Geographical Science, 17, 127-134.
https://doi.org/10.1007/s11769-007-0127-5
[13]  Zappa, W., Junginger, M. and van den Broek, M. (2019) Is a 100% Renewable European Power System Feasible by 2050? Applied Energy, 233-234, 1027-1050.
https://doi.org/10.1016/j.apenergy.2018.08.109
[14]  González, M.O.A., Goncalves, J.S. and Vasconcelos, R.M. (2017) Sustainable Development: Case Study in the Implementation of Renewable Energy in Brazil. Journal of Cleaner Production, 142, 461-475.
https://doi.org/10.1016/j.jclepro.2016.10.052
[15]  Lima, F., Ferreira, P. and Vieira, F. (2013) Strategic Impact Management of Wind Power Projects. Renewable and Sustainable Energy Reviews, 25, 277-290.
https://doi.org/10.1016/j.rser.2013.04.010
[16]  Fernández-García, A., Rojas, E., Pérez, M., Silva, R., Hernández-Escobedo, Q. and Manzano-Agugliaro, F. (2015) A Parabolic-Trough Collector for Cleaner Industrial Process Heat. Journal of Cleaner Production, 89, 272-285.
https://doi.org/10.1016/j.jclepro.2014.11.018
[17]  Bergius, K. and Oberg, T. (2007) Initial Screening of Contaminated Land: A Comparison of US and Swedish Methods. Environmental Management, 39, 226-234.
https://doi.org/10.1007/s00267-006-0005-4
[18]  Zhu, J., Liao, S., Lei, Z. and Li, S.Z. (2017) Multi-Label Convolutional Neural Network Based Pedestrian Attribute Classification. Image and Vision Computing, 58, 224-229.
https://doi.org/10.1016/j.imavis.2016.07.004
[19]  Hartmann, B., Torok, S., Borcsok, E. and Oláhné Groma, V. (2014) Multi-Objective Method for Energy Purpose Redevelopment of Brownfield Sites. Journal of Cleaner Production, 82, 202-212.
https://doi.org/10.1016/j.jclepro.2014.07.002
[20]  Kovacs, H. and Szemmelveisz, K. (2017) Disposal Options for Polluted Plants Grown on Heavy Metal Contaminated Brownfield Lands—A Review. Chemosphere, 166, 8-20.
https://doi.org/10.1016/j.chemosphere.2016.09.076
[21]  U.S. Government Publishing Office (2002) Public Law 107-118—Small Business Liability Relief and Brownfields Revitalization Act. HR 2869, 1-27.
https://goo.gl/UK19n2
[22]  U.S. Government Publishing Office (2015) 42 U.S.C. 9601-9628—Hazardous Substances Releases, Liability, Compensation. United States Code, 2012 Ed Suppl 3, Title 42—Public Heal Welfare, Subchapter I, 6945-7034.
https://goo.gl/y0ki6N
[23]  Rong, L., Zhang, C., Jin, D. and Dai, Z. (2017) Assessment of the Potential Utilization of Municipal Solid Waste from a Closed Irregular Landfill. Journal of Cleaner Production, 142, 413-419.
https://doi.org/10.1016/j.jclepro.2015.10.050
[24]  U.S. Government Publishing Office. (2011) 40 C.F.R. 239-282—Solid Wastes. Code Fed Regul (Annual Ed).
https://goo.gl/UBCLDF
[25]  Justin, M.Z. and Zupancic, M. (2009) Combined Purification and Reuse of Landfill Leachate by Constructed Wetland and Irrigation of Grass and Willows. Desalination, 246, 157-168.
https://doi.org/10.1016/j.desal.2008.03.049
[26]  Siddique, N. and Adeli, H. (2013) Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing. John Wiley & Sons, Ltd., Oxford.
https://doi.org/10.1002/9781118534823
[27]  Kacprzyk, J. and Pedrycz, W., Eds. (2015) Springer Handbook of Computational Intelligence. Springer, Berlin.
https://doi.org/10.1007/978-3-662-43505-2
[28]  Kruse, R., Borgelt, C., Braune, C., Mostaghim, S. and Steinbrecher, M. (2016) Computational Intelligence: A Methodological Introduction. 2nd Edition, Springer, London.
https://doi.org/10.1007/978-1-4471-7296-3
[29]  Hadi, W., Al-Radaideh, Q.A. and Alhawari, S. (2018) Integrating Associative Rule-Based Classification with Naive Bayes for Text Classification. Applied Soft Computing, 69, 344-356.
https://doi.org/10.1016/j.asoc.2018.04.056
[30]  Mirończuk, M.M. and Protasiewicz, J. (2018) A Recent Overview of the State-of-the-Art Elements of Text Classification. Expert Systems with Applications, 106, 36-54.
https://doi.org/10.1016/j.eswa.2018.03.058
[31]  Yuan, H., Li, J., Lai, L.L. and Tang, Y.Y. (2018) Graph-Based Multiple Rank Regression for Image Classification. Neurocomputing, 315, 394-404.
https://doi.org/10.1016/j.neucom.2018.07.032
[32]  Agrawal, A. (2018) Unified Classification of Open Fractures: Based on Gustilo and OTA Classification Schemes. Injury, 49, 1526-1531.
https://doi.org/10.1016/j.injury.2018.06.007
[33]  Soni, A., Gupta, R., Gupta, S., Kansay, R. and Kapoor, L. (2018) Mechanism of Injury Based Classification of Proximal Tibia Fractures. Journal of Clinical Orthopaedics and Trauma, 10, 785-788.
https://doi.org/10.1016/j.jcot.2018.08.012
[34]  Andres, M.P., Borrelli, G.M. and Abrao, M.S. (2018) Endometriosis Classification according to Pain Symptoms: Can the ASRM Classification Be Improved? Best Practice and Research Clinical Obstetrics and Gynaecology, 51, 111-118.
https://doi.org/10.1016/j.bpobgyn.2018.06.003
[35]  Cappe, M., Deruelle, P., Depret, S., Houfflin-Debarge, V., Ghesquière, L. and Garabedian, C. (2018) Fetal Heart Rate Classification in Routine Use: Do Your Prefer a 3-Tier or a 5-Tier Classification? Journal of Gynecology Obstetrics and Human Reproduction, 47, 477-480.
https://doi.org/10.1016/j.jogoh.2018.08.001
[36]  Sannino, G. and De Pietro, G. (2018) A Deep Learning Approach for ECG-Based Heartbeat Classification for Arrhythmia Detection. Future Generation Computer Systems, 86, 446-455.
https://doi.org/10.1016/j.future.2018.03.057
[37]  Tutmez, B. (2018) Bauxite Quality Classification by Shrinkage Methods. Journal of Geochemical Exploration, 191, 22-27.
https://doi.org/10.1016/j.gexplo.2018.05.002
[38]  Ren, L., Guo, M. and Pang, X. (2018) Identification and Classification of Medicinal Plants in Epimedium. Chinese Herbal Medicines, 10, 249-254.
https://doi.org/10.1016/j.chmed.2018.05.004
[39]  Kim, H., Kim, J., Kim, J. and Lim, P. (2018) Towards Perfect Text Classification with Wikipedia-Based Semantic Naive Bayes Learning. Neurocomputing, 315, 128-134.
https://doi.org/10.1016/j.neucom.2018.07.002
[40]  Wang, C. and Wang, J.Z. (2018) Cloud-Service Decision Tree Classification for Education Platform. Cognitive Systems Research, 52, 234-239.
https://doi.org/10.1016/j.cogsys.2018.06.021
[41]  Beucher, A., Moller, A.B. and Greve, M.H. (2019) Artificial Neural Networks and Decision Tree Classification for Predicting Soil Drainage Classes in Denmark. Geoderma, 352, 351-359.
[42]  Wu, W., Li, A.-D., He, X.-H., Ma, R., Liu, H.-B. and Lv, J.-K. (2018) A Comparison of Support Vector Machines, Artificial Neural Network and Classification Tree for Identifying Soil Texture Classes in Southwest China. Computers and Electronics in Agriculture, 144, 86-93.
https://doi.org/10.1016/j.compag.2017.11.037
[43]  Mancuhan, K. and Clifton, C. (2018) Support Vector Classification with l-Diversity. Computers and Security, 77, 653-665.
https://doi.org/10.1016/j.cose.2017.12.010
[44]  Rinta-Koski, O.-P., Sarkka, S., Hollmén, J., Leskinen, M. and Andersson, S. (2018) Gaussian Process Classification for Prediction of In-Hospital Mortality among Preterm Infants. Neurocomputing, 298, 134-141.
https://doi.org/10.1016/j.neucom.2017.12.064
[45]  Andrade, D., Tamura, A. and Tsuchida, M. (2018) Exploiting Covariate Embeddings for Classification Using Gaussian Processes. Pattern Recognition Letters, 104, 8-14.
https://doi.org/10.1016/j.patrec.2018.01.011
[46]  Sovizi, J., Mathieu, K.B., Thrower, S.L., Stefan, W., Hazle, J.D. and Fuentes, D. (2017) Gaussian Process Classification of Superparamagnetic Relaxometry Data: Phantom Study. Artificial Intelligence in Medicine, 82, 47-59.
https://doi.org/10.1016/j.artmed.2017.07.001
[47]  Müller, P., Salminen, K., Nieminen, V., Kontunen, A., Karjalainen, M., Isokoski, P., et al. (2019) Scent Classification by K Nearest Neighbors Using Ion-Mobility Spectrometry Measurements. Expert Systems with Applications, 115, 593-606.
https://doi.org/10.1016/j.eswa.2018.08.042
[48]  Zhang, X., Li, Y., Kotagiri, R., Wu, L., Tari, Z. and Cheriet, M. (2017) KRNN: K Rare-Class Nearest Neighbour Classification. Pattern Recognition, 62, 33-44.
https://doi.org/10.1016/j.patcog.2016.08.023
[49]  Guo, Y., Han, S., Li, Y., Zhang, C. and Bai, Y. (2018) K-Nearest Neighbor Combined with Guided Filter for Hyperspectral Image Classification. Procedia Computer Science, 129, 159-165.
https://doi.org/10.1016/j.procs.2018.03.066
[50]  Gallego, A.-J., Calvo-Zaragoza, J., Valero-Mas, J.J. and Rico-Juan, J.R. (2018) Clustering-Based K-Nearest Neighbor Classification for Large-Scale Data with Neural Codes Representation. Pattern Recognition, 74, 531-543.
https://doi.org/10.1016/j.patcog.2017.09.038
[51]  Feng, X., Xiao, Z., Zhong, B., Qiu, J. and Dong, Y. (2018) Dynamic Ensemble Classification for Credit Scoring Using Soft Probability. Applied Soft Computing, 65, 139-151.
https://doi.org/10.1016/j.asoc.2018.01.021
[52]  Jackowski, K. (2018) New Diversity Measure for Data Stream Classification Ensembles. Engineering Applications of Artificial Intelligence, 74, 23-34.
https://doi.org/10.1016/j.engappai.2018.05.006
[53]  Ankit and Saleena, N. (2018) An Ensemble Classification System for Twitter Sentiment Analysis. Procedia Computer Science, 132, 937-946.
https://doi.org/10.1016/j.procs.2018.05.109
[54]  Simoncini, M., Taccari, L., Sambo, F., Bravi, L., Salti, S. and Lori, A. (2018) Vehicle Classification from Low-Frequency GPS Data with Recurrent Neural Networks. Transportation Research Part C: Emerging Technologies, 91, 176-191.
https://doi.org/10.1016/j.trc.2018.03.024
[55]  Sharma, N., Jain, V. and Mishra, A. (2018) An Analysis of Convolutional Neural Networks for Image Classification. Procedia Computer Science, 132, 377-384.
https://doi.org/10.1016/j.procs.2018.05.198
[56]  Li, H., Li, G., Ji, X. and Shi, L. (2018) Deep Representation via Convolutional Neural Network for Classification of Spatiotemporal Event Streams. Neurocomputing, 299, 1-9.
https://doi.org/10.1016/j.neucom.2018.02.019
[57]  de Mesquita Sá, J.J.J., , Backes, A.R. and Bruno, O.M. (2018) Randomized Neural Network Based Descriptors for Shape Classification. Neurocomputing, 312, 201-209.
https://doi.org/10.1016/j.neucom.2018.05.099
[58]  Gotsopoulos, A., Saarimaki, H., Glerean, E., Jaaskelainen, I.P., Sams, M., Nummenmaa, L., et al. (2018) Reproducibility of Importance Extraction Methods in Neural Network Based fMRI Classification. Neuroimage, 181, 44-54.
https://doi.org/10.1016/j.neuroimage.2018.06.076
[59]  Marugán, A.P., Márquez, F.P.G., Perez, J.M.P. and Ruiz-Hernández, D. (2018) A Survey of Artificial Neural Network in Wind Energy Systems. Applied Energy, 228, 1822-1836.
https://doi.org/10.1016/j.apenergy.2018.07.084
[60]  Cao, W., Wang, X., Ming, Z. and Gao, J. (2018) A Review on Neural Networks with Random Weights. Neurocomputing, 275, 278-287.
https://doi.org/10.1016/j.neucom.2017.08.040
[61]  Ojha, V.K., Abraham, A. and Snásel, V. (2017) Metaheuristic Design of Feedforward Neural Networks: A Review of Two Decades of Research. Engineering Applications of Artificial Intelligence, 60, 97-116.
https://doi.org/10.1016/j.engappai.2017.01.013
[62]  Prieto, A., Prieto, B., Ortigosa, E.M., Ros, E., Pelayo, F., Ortega, J., et al. (2016) Neural Networks: An Overview of Early Research, Current Frameworks and New Challenges. Neurocomputing, 214, 242-268.
https://doi.org/10.1016/j.neucom.2016.06.014
[63]  Basheer, I. and Hajmeer, M. (2000) Artificial Neural Networks: Fundamentals, Computing, Design, and Application. Journal of Microbiological Methods, 43, 3-31.
https://doi.org/10.1016/S0167-7012(00)00201-3
[64]  Almási, A.-D., Wozniak, S., Cristea, V., Leblebici, Y. and Engbersen, T. (2016) Review of Advances in Neural Networks: Neural Design Technology Stack. Neurocomputing, 174, 31-41.
https://doi.org/10.1016/j.neucom.2015.02.092
[65]  Erdogmus, D., Fontenla-Romero, O., Principe, J.C., Alonso-Betanzos, A., Castillo, E. (2005) Linear-Least-Squares Initialization of Multilayer Perceptrons through Backpropagation of the Desired Response. IEEE Transactions on Neural Networks, 16, 325-337.
https://doi.org/10.1109/TNN.2004.841777
[66]  Nasr, M.B. and Chtourou, M. (2011) A Self-Organizing Map-Based Initialization for Hybrid Training of Feedforward Neural Networks. Applied Soft Computing, 11, 4458-4464.
https://doi.org/10.1016/j.asoc.2011.05.017
[67]  Sodhi, S.S. and Chandra, P. (2014) Interval Based Weight Initialization Method for Sigmoidal Feedforward Artificial Neural Networks. AASRI Procedia, 6, 19-25.
https://doi.org/10.1016/j.aasri.2014.05.004
[68]  Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning Representations by Back-Propagating Errors. Nature, 323, 533-536.
https://doi.org/10.1038/323533a0
[69]  Rosenblatt, F. (1958) The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65, 386-408.
https://doi.org/10.1037/h0042519
[70]  Adam, S.P., Karras, D.A., Magoulas, G.D. and Vrahatis, M.N. (2014) Solving the Linear Interval Tolerance Problem for Weight Initialization of Neural Networks. Neural Networks, 54, 17-37.
https://doi.org/10.1016/j.neunet.2014.02.006
[71]  Talaska, T., Kolasa, M., Dlugosz, R. and Farine, P.-A. (2015) An Efficient Initialization Mechanism of Neurons for Winner Takes all Neural Network Implemented in the CMOS Technology. Applied Mathematics and Computation, 267, 119-138.
https://doi.org/10.1016/j.amc.2015.04.123
[72]  Qing, S. (2011) Robust Initialization of a Jordan Network with Recurrent Constrained Learning. IEEE Transactions on Neural Networks, 22, 2460-2473.
https://doi.org/10.1109/TNN.2011.2168423
[73]  Napolitano, G., Serinaldi, F. and See, L. (2011) Impact of EMD Decomposition and Random Initialisation of Weights in ANN Hindcasting of Daily Stream Flow Series: An Empirical Examination. Journal of Hydrology, 406, 199-214.
https://doi.org/10.1016/j.jhydrol.2011.06.015
[74]  Dolezel, P., Skrabanek, P. and Gago, L. (2016) Weight Initialization Possibilities for Feedforward Neural Network with Linear Saturated Activation Functions. IFAC-PapersOnLine, 49, 49-54.
https://doi.org/10.1016/j.ifacol.2016.12.009
[75]  Qiao, J., Li, S. and Li, W. (2016) Mutual Information Based Weight Initialization Method for Sigmoidal Feedforward Neural Networks. Neurocomputing, 207, 676-683.
https://doi.org/10.1016/j.neucom.2016.05.054
[76]  Daniel, L., Chaturvedi, K.T. and Kolhe, M.L. (2018) Dynamic Economic Load Dispatch Using Levenberg Marquardt Algorithm. Energy Procedia, 144, 95-103.
https://doi.org/10.1016/j.egypro.2018.06.013
[77]  Mammadli, S. (2017) Financial Time Series Prediction Using Artificial Neural Network Based on Levenberg-Marquardt Algorithm. Procedia Computer Science, 120, 602-607.
https://doi.org/10.1016/j.procs.2017.11.285
[78]  Hraiba, A., Touil, A. and Mousrij, A. (2020) Artificial Neural Network Based Hybrid Metaheuristics for Reliability Analysis. IFAC-PapersOnLine, 53, 654-660.
https://doi.org/10.1016/j.ifacol.2020.06.109
[79]  Wan, P., Zou, H., Wang, K. and Zhao, Z. (2020) Research on Hot Deformation Behavior of Zr-4 Alloy Based on PSO-BP Artificial Neural Network. Journal of Alloys and Compounds, 826, Article ID: 154047.
https://doi.org/10.1016/j.jallcom.2020.154047
[80]  Deng, Y., Xiao, H., Xu, J. and Wang, H. (2019) Prediction Model of PSO-BP Neural Network on Coliform Amount in Special Food. Saudi Journal of Biological Sciences, 26, 1154-1160.
https://doi.org/10.1016/j.sjbs.2019.06.016
[81]  Panda, N. and Majhi, S.K. (2020) Improved Spotted Hyena Optimizer with Space Transformational Search for Training Pi-Sigma Higher Order Neural Network. Computational Intelligence, 36, 320-350.
https://doi.org/10.1111/coin.12272
[82]  Abedinia, O., Amjady, N. and Ghadimi, N. (2018) Solar Energy Forecasting Based on Hybrid Neural Network and Improved Metaheuristic Algorithm. Computational Intelligence, 34, 241-260.
https://doi.org/10.1111/coin.12145
[83]  Gong, S., Gao, W. and Abza, F. (2020) Brain Tumor Diagnosis Based on Artificial Neural Network and a Chaos Whale Optimization Algorithm. Computational Intelligence, 36, 259-275.
https://doi.org/10.1111/coin.12259
[84]  Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, IEEE, Perth, WA,, 27 November-1 December 1995, 1942-1948.
https://doi.org/10.1109/ICNN.1995.488968
[85]  Zhang, H., Yuan, M., Liang, Y. and Liao, Q. (2018) A Novel Particle Swarm Optimization Based on Prey-Predator Relationship. Applied Soft Computing, 68, 202-218.
https://doi.org/10.1016/j.asoc.2018.04.008
[86]  Chen, Y., Li, L., Peng, H., Xiao, J. and Wu, Q. (2018) Dynamic Multi-Swarm Differential Learning Particle Swarm Optimizer. Swarm and Evolutionary Computation, 39, 209-221.
https://doi.org/10.1016/j.swevo.2017.10.004
[87]  Engelbrecht, A.P. (2007) Computational Intelligence: An Introduction. 2nd Edition, John Wiley & Sons, Ltd., Hoboken.
https://doi.org/10.1002/9780470512517
[88]  Brownlee, J. (2011) Clever Algorithms. LuLu.com, Raleigh, NC.
[89]  Zhu, X. and Xu, B. (2012) Urban Water Consumption Forecast Based on QPSO-RBF Neural Network. 2012 Eighth International Conference on Computational Intelligence and Security, Guangzhou, 17-18 November 2012, 233-236.
https://doi.org/10.1109/CIS.2012.59
[90]  Sun, J., Feng, B. and Xu, W. (2004) Particle Swarm Optimization with Particles Having Quantum Behavior. Proceedings of the 2004 Congress on Evolutionary Computation, Vol. 1, IEEE, Portland, 19-23 June 2004, 325-331.
https://doi.org/10.1109/CEC.2004.1330875
[91]  Clerc, M. and Kennedy, J. (2002) The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation, 6, 58-73.
https://doi.org/10.1109/4235.985692
[92]  Kouziokas, G.N. (2020) A New W-SVM Kernel Combining PSO-Neural Network Transformed Vector and Bayesian Optimized SVM in GDP Forecasting. Engineering Applications of Artificial Intelligence, 92, Article ID: 103650.
https://doi.org/10.1016/j.engappai.2020.103650
[93]  Coelho, L.d.S. (2010) Gaussian Quantum-Behaved Particle Swarm Optimization Approaches for Constrained Engineering Design Problems. Expert Systems with Applications, 37, 1676-1683.
https://doi.org/10.1016/j.eswa.2009.06.044
[94]  Sun, J., Xu, W. and Feng, B. (2005) Adaptive Parameter Control for Quantum-Behaved Particle Swarm Optimization on Individual Level. 2005 IEEE International Conference on Systems, Man and Cybernetics, Vol. 4, Waikoloa, 12 October 2005, 3049-3054.
https://doi.org/10.1109/ICSMC.2005.1571614
[95]  Sun, J., Xu, W. and Feng, B. (2004) A Global Search Strategy of Quantum-Behaved Particle Swarm Optimization. IEEE Conference on Cybernetics and Intelligence Systems 2004, Vol. 1, Singapore, 1-3 December 2004, 111-116.
https://doi.org/10.1109/ICCIS.2004.1460396
[96]  Xi, M., Sun, J. and Xu, W. (2008) An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Weighted Mean Best Position. Applied Mathematics and Computation, 205, 751-759.
https://doi.org/10.1016/j.amc.2008.05.135
[97]  Fang, W., Sun, J., Ding, Y., Wu, X. and Xu, W. (2010) A Review of Quantum-Behaved Particle Swarm Optimization. IETE Technical Review, 27, 336-348.
https://doi.org/10.4103/0256-4602.64601
[98]  Franco D.G.d.B. and Steiner M.T.A. (2018) Clustering of Solar Energy Facilities Using a Hybrid Fuzzy C-Means Algorithm Initialized by Metaheuristics. Journal of Cleaner Production, 191, 445-457.
https://doi.org/10.1016/j.jclepro.2018.04.207
[99]  Zhou, K., Yang, S. and Shao, Z. (2017) Household Monthly Electricity Consumption Pattern Mining: A Fuzzy Clustering-Based Model and a Case Study. Journal of Cleaner Production, 141, 900-908.
https://doi.org/10.1016/j.jclepro.2016.09.165
[100]  Wu, K.-L. (2012) Analysis of Parameter Selections for Fuzzy C-Means. Pattern Recognition, 45, 407-415.
https://doi.org/10.1016/j.patcog.2011.07.012
[101]  Zhou, K., Fu, C. and Yang, S. (2014) Fuzziness Parameter Selection in Fuzzy C-Means: The Perspective of Cluster Validation. Science China Information Sciences, 57, 1-8.
https://doi.org/10.1007/s11432-014-5146-0
[102]  Lee, L.C., Liong, C.-Y. and Jemain, A.A. (2018) Validity of the Best Practice in Splitting Data for Hold-Out Validation Strategy as Performed on the Ink Strokes in the Context of Forensic Science. Microchemical Journal, 139, 125-133.
https://doi.org/10.1016/j.microc.2018.02.009
[103]  Yadav, S. and Shukla, S. (2016) Analysis of K-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. 2016 IEEE 6th International Conference on Advanced Computing, Bhimavaram, 27-28 February 2016, 78-83.
https://doi.org/10.1109/IACC.2016.25
[104]  Arlot, S. and Celisse, A. (2010) A Survey of Cross-Validation Procedures for Model Selection. Statistics Surveys, 4, 40-79.
https://doi.org/10.1214/09-SS054
[105]  Massart, P. (2007) Concentration Inequalities and Model Selection. Vol. 1896, Springer, Berlin.
[106]  Nawi, N.M., Khan, A., Rehman, M.Z., Aziz, M.A., Herawan, T. and Abawajy, J.H. (2014) An Accelerated Particle Swarm Optimization Based Levenberg Marquardt Back Propagation Algorithm. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A. and Huang, K., Eds., Neural Information Processing, International Conference on Neural Information Processing 2014, Vol. 8835, Springer, Cham, 245-253.
https://doi.org/10.1007/978-3-319-12640-1_30
[107]  Dilmen, E., Yilmaz, S. and Beyhan, S. (2017) Chapter 5. An Intelligent Hybridization of ABC and LM Algorithms with Constraint Engineering Applications. In: Samui, P., Sekhar, S. and Balas, V.E., Eds., Handbook of Neural Computation, Elsevier, Amsterdam, 87-107.
https://doi.org/10.1016/B978-0-12-811318-9.00005-3
[108]  Maia, A., Ferreira, E., Oliveira, M.C., Menezes, L.F. and Andrade-Campos, A. (2017) 3. Numerical Optimization Strategies for Springback Compensation in Sheet Metal Forming. In: Davim, J.P., Ed., Computational Methods and Production Engineering, Elsevier, Amsterdam, 51-82.
https://doi.org/10.1016/B978-0-85709-481-0.00003-3
[109]  Lima, C.F., Lobo, F.G., Pelikan, M. and Goldberg, D.E. (2011) Model Accuracy in the Bayesian Optimization Algorithm. Soft Computing, 15, 1351-1371.
https://doi.org/10.1007/s00500-010-0675-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133