Honey bees are an
established animal model for studying learning and memory related behaviors. In
recent years, honey bees have become more common as a model for investigations
of molecular biology, including gene expression. Honey bees have been used to
extrapolate genetic functions found in other invertebrates, such as Drosophilamelanogaster. The honey bee
model has also provided a means for isolating novel genes, including non-coding
microRNA fragments. Integrating the study of learning and memory with molecular
genetics, the present work examines the effect of learning acquisition and
memory consolidation in free-choice paradigms
on the expression of a suite of genes of interest. Results suggest that
short-term learning acquisition causes differential expression of microRNA
fragments, while memory consolidation
differentially affects the expression of the serine/threonine protein
kinase gene in honey bees. These results corroborate previous findings
suggesting the importance of protein kinases in the formation of long term
memory, and suggest that microRNA may play a large role in regulation of
cytoskeletal scaffolding proteins.
References
[1]
Honeybee Genome Sequencing Consortium (2006) Insights into Social Insects from the Genome of the Honeybee Apis mellifera. Nature, 443, 931. https://doi.org/10.1038/nature05400
[2]
Ilyasov, R.A. (2016) Features of the Honey Bee Apis mellifera Genome versus Fruit Fly Drosophila melanogaster. Journal of Investigative Genomics, 3, 19-21. https://doi.org/10.15406/jig.2016.03.00044
[3]
Menzel, R. and Erber, J. (1978) Learning and Memory in Bees. Scientific American, 239, 102-111. https://doi.org/10.1038/scientificamerican0778-102
[4]
Abramson, C.I., Stone, S.M., Ortez, R.A., Luccardi, A., Vann, K.L., Hanig, K.D. and Rice, J. (2000) The Development of an Ethanol Model Using Social Insects I: Behavior Studies of the Honey Bee (Apis mellifera L.). Alcoholism: Clinical and Experimental Research, 24, 1153-1166. https://doi.org/10.1111/j.1530-0277.2000.tb02078.x
[5]
Abramson, C.I., Sanderson, C., Painter, J., Barnett, S. and Wells, H. (2005) Development of an Ethanol Model Using Social Insects: V. Honeybee Foraging Decisions under the Influence of Alcohol. Alcohol, 36, 187-193. https://doi.org/10.1016/j.alcohol.2005.09.001
[6]
Menzel, R., Erber, J. and Masuhr, T. (1974) Learning and Memory in the Honeybee. In: Barton, B.L., Ed., Experimental Analysis of Insect Behaviour, Springer, Berlin. https://doi.org/10.1007/978-3-642-86666-1_14
[7]
Menzel, R. (1993) Associative Learning in Honey Bees. Apidologie, 24, 157-168. https://doi.org/10.1051/apido:19930301
[8]
Walldorf, U., Fleig, R. and Gehring, W.J. (1989) Comparison of Homeo Box-Containing Genes in the Honeybee and Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 86, 9971-9975. https://doi.org/10.1073/pnas.86.24.9971
[9]
Kohno, H. and Kubo, T. (2019) Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. Insects, 10, 348. https://doi.org/10.3390/insects10100348
[10]
Black, T.E., Fofah, O., Dinges, C.W., Ortiz-Alvarado, C.A., Avalos, A., Ortiz-Alvarado, Y. and Abramson, C.I. (2020) Effects of Aversive Conditioning on Expression of Physiological Stress in Honey Bees (Apis mellifera). Neurobiology of Learning and Memory, 178, Article ID: 107363. https://doi.org/10.1016/j.nlm.2020.107363
[11]
Bitterman, M.E., Menzel, R., Fietz, A. and Schäfer, S. (1983) Classical Conditioning of Proboscis Extension in Honeybees (Apis mellifera). Journal of Comparative Psychology, 97, 107. https://doi.org/10.1037/0735-7036.97.2.107
[12]
Abramson, C.I., Mixson, T.A., Çakmak, I., Place, A.J. and Wells, H. (2008) Pavlovian Conditioning of the Proboscis Extension Reflex in Harnessed Foragers Using Paired vs. Unpaired and Discrimination Learning Paradigms: Tests for Differences among Honeybee Subspecies in Turkey. Apidologie, 39, 428-435. https://doi.org/10.1051/apido:2008025
[13]
Giannoni-Guzmán, M.A., Giray, T., Agosto-Rivera, J.L., Stevison, B.K., Freeman, B., Ricci, P., Abramson, C.I., et al. (2014) Ethanol-Induced Effects on Sting Extension Response and Punishment Learning in the Western Honey Bee (Apis mellifera). PLoS ONE, 9, e100894. https://doi.org/10.1371/journal.pone.0100894
[14]
Amaya-Márquez, M., Hill, P.S., Abramson, C.I. and Wells, H. (2014) Honey Bee Location- and Time-Linked Memory Use in Novel Foraging Situations: Floral Color Dependency. Insects, 5, 243-269. https://doi.org/10.3390/insects5010243
[15]
Hill, P.S., Wells, P.H. and Wells, H. (1997) Spontaneous Flower Constancy and Learning in Honey Bees as a Function of Colour. Animal Behaviour, 54, 615-627. https://doi.org/10.1006/anbe.1996.0467
[16]
Menzel, R. (1999) Memory Dynamics in the Honeybee. Journal of Comparative Physiology A, 185, 323-340. https://doi.org/10.1007/s003590050392
[17]
Dinges, C.W., Avalos, A., Abramson, C.I., Craig, D.P.A., Austin, Z.M., Varnon, C.A., Dal, F.M., Giray, T. and Wells, H. (2013) Aversive Conditioning in Honey Bees (Apis mellifera anatolica): A Comparison of Drones and Workers. The Journal of Experimental Biology, 216, 4124-4134. https://doi.org/10.1242/jeb.090100
[18]
Black, T.E., Fofah, O., Giray, T., Wells, H., Le Conte, Y. and Abramson, C.I. (2018) Influence of Environmental Experience on Aversive Conditioning in Honey Bees (Apis mellifera L.). Apidologie, 49, 647-659. https://doi.org/10.1007/s13592-018-0592-0
[19]
Nouvian, M. and Galizia, C.G. (2019) Aversive Training of Honey Bees in an Automated Y-Maze. Frontiers in Physiology, 10, 678. https://doi.org/10.3389/fphys.2019.00678
[20]
Gross, H.J., Pahl, M., Si, A., Zhu, H., Tautz, J. and Zhang, S. (2009) Number-Based Visual Generalisation in the Honeybee. PLoS ONE, 4, e4263. https://doi.org/10.1371/journal.pone.0004263
[21]
Wainselboim, A.J., Roces, F. and Farina, W.M. (2002) Honeybees Assess Changes in Nectar Flow within a Single Foraging Bout. Animal Behaviour, 63, 1-6. https://doi.org/10.1006/anbe.2001.1879
[22]
Hammer, M. and Menzel, R. (1995) Learning and Memory in the Honeybee. Journal of Neuroscience, 15, 1617-1630. https://doi.org/10.1523/JNEUROSCI.15-03-01617.1995
[23]
Abramson, C.I., Place, A.J., Aquino, I.S. and Fernandez, A. (2004) Development of an Ethanol Model Using Social Insects: IV. Influence of Ethanol on the Aggression of Africanized Honey Bees (Apis mellifera L.). Psychological Reports, 94, 1107-1115. https://doi.org/10.2466/pr0.94.3c.1107-1115
[24]
Hranitz, J.M., Abramson, C.I. and Carter, R.P. (2010) Ethanol Increases HSP70 Concentrations in Honeybee (Apis mellifera L.) Brain Tissue. Alcohol, 44, 275-282. https://doi.org/10.1016/j.alcohol.2010.02.003
[25]
Evan, N., Devaud, J.M. and Barron, A. (2012) General Stress Responses in the Honey Bee. Insects, 3, 1271-1298. https://doi.org/10.3390/insects3041271
[26]
Hunt, G.J., Page, R.E., Fondrk, M.K. and Dullum, C.J. (1995) Major Quantitative Trait Loci Affecting Honey Bee Foraging Behavior. Genetics, 141, 1537-1545. https://doi.org/10.1093/genetics/141.4.1537
[27]
Schafer, D.A. and Schroer, T.A. (1999) Actin-Related Proteins. Annual Review of Cell and Developmental Biology, 15, 341-363. https://doi.org/10.1146/annurev.cellbio.15.1.341
[28]
Pollard, T.D. (2016) Actin and Actin-Binding Proteins. Cold Spring Harbor Perspectives in Biology, 8, a018226. https://doi.org/10.1101/cshperspect.a018226
[29]
Mullins, R.D. and Pollard, T.D. (1999) Structure and Function of the Arp2/3 Complex. Current Opinion in Structural Biology, 9, 244-249. https://doi.org/10.1016/S0959-440X(99)80034-7
[30]
Mullins, R. (2013) Actin-Related Proteins. In: Lennarz, W.J. and Lane, M.D., Eds., Encyclopedia of Biological Chemistry, Elsevier, Amsterdam, 36-41. https://doi.org/10.1016/B978-0-12-378630-2.00468-0
[31]
Li, J., Feng, M., Zhang, Z. and Pan, Y. (2008) Identification of the Proteome Complement of Hypopharyngeal Glands from Two Strains of Honeybees (Apis mellifera). Apidologie, 39, 199-214. https://doi.org/10.1051/apido:2007059
[32]
Poch, O. and Winsor, B. (1997) Who’s Who among the Saccharomyces cerevisiae Actin-Related Proteins? A Classification and Nomenclature Proposal for a Large Family. Yeast, 13, 1053-1058. https://doi.org/10.1002/(SICI)1097-0061(19970915)13:11<1053::AID-YEA164>3.0.CO;2-4
[33]
Cristino, A.S., Barchuk, A.R., Freitas, F.C., Narayanan, R.K., Biergans, S.D., Zhao, Z., Claudianos, C., et al. (2014) Neuroligin-Associated microRNA-932 Targets Actin and Regulates Memory in the Honeybee. Nature Communications, 5, Article No. 5529. https://doi.org/10.1038/ncomms6529
[34]
Lamprecht, R. (2016) The Role of Actin Cytoskeleton in Memory Formation in Amygdala. Frontiers in Molecular Neuroscience, 9, 23. https://doi.org/10.3389/fnmol.2016.00023
[35]
Silva, A.J., Paylor, R., Wehner, J.M. and Tonegawa, S. (1992) Impaired Spatial Learning in Alpha-Calcium-Calmodulin Kinase II Mutant Mice. Science, 257, 206-211. https://doi.org/10.1126/science.1321493
[36]
Abeliovich, A., Paylor, R., Chen, C., Kim, J.J., Wehner, J.M. and Tonegawa, S. (1993) PKCγ Mutant Mice Exhibit Mild Deficits in Spatial and Contextual Learning. Cell, 75, 1263-1271. https://doi.org/10.1016/0092-8674(93)90614-V
[37]
Tejedor, F., Zhu, X.R., Kaltenbach, E., Ackermann, A., Baumann, A., Canal, I., Pongs, O., et al. (1995) Minibrain: A New Protein Kinase Family Involved in Postembryonic Neurogenesis in Drosophila. Neuron, 14, 287-301. https://doi.org/10.1016/0896-6273(95)90286-4
[38]
Giese, K.P. and Mizuno, K. (2013) The Roles of Protein Kinases in Learning and Memory. Learning & Memory, 20, 540-552. https://doi.org/10.1101/lm.028449.112
[39]
Nara, K., Akasako, Y., Matsuda, Y., Fukazawa, Y., Iwashita, S., Kataoka, M. and Nagai, Y. (2001) Cloning and Characterization of a Novel Serine/Threonine Protein Kinase Gene Expressed Predominantly in Developing Brain. European Journal of Biochemistry, 268, 2642-2651. https://doi.org/10.1046/j.1432-1327.2001.02157.x
[40]
Stork, O., Zhdanov, A., Kudersky, A., Yoshikawa, T., Obata, K. and Pape, H.C. (2004) Neuronal Functions of the Novel Serine/Threonine Kinase Ndr2. Journal of Biological Chemistry, 279, 45773-45781. https://doi.org/10.1074/jbc.M403552200
[41]
Lee, P.T., Lin, G., Lin, W.W., Diao, F., White, B.H. and Bellen, H.J. (2018) A Kinase-Dependent Feed forward Loop Affects CREBB Stability and Long Term Memory Formation. Elife, 7, e33007. https://doi.org/10.7554/eLife.33007.022
[42]
Ghildiyal, M. and Zamore, P.D. (2009) Small Silencing RNAs: An Expanding Universe. Nature Reviews Genetics, 10, 94-108. https://doi.org/10.1038/nrg2504
[43]
Ashraf, S.I., McLoon, A.L., Sclarsic, S.M. and Kunes, S. (2006) Synaptic Protein Synthesis Associated with Memory Is Regulated by the RISC Pathway in Drosophila. Cell, 124, 191-205. https://doi.org/10.1016/j.cell.2005.12.017
[44]
Schratt, G. (2009) microRNAs at the Synapse. Nature Reviews Neuroscience, 10, 842-849. https://doi.org/10.1038/nrn2763
[45]
Edbauer, D., Neilson, J.R., Foster, K.A., Wang, C.F., Seeburg, D.P., Batterton, M.N., Sheng, M., et al. (2010) Regulation of Synaptic Structure and Function by FMRP-Associated microRNAs miR-125b and miR-132. Neuron, 65, 373-384. https://doi.org/10.1016/j.neuron.2010.01.005
[46]
Gao, J., Wang, W.Y., Mao, Y.W., Gräff, J., Guan, J.S., Pan, L., Tsai, L.H., et al. (2010) A Novel Pathway Regulates Memory and Plasticity via SIRT1 and miR-134. Nature, 466, 1105-1109. https://doi.org/10.1038/nature09271
[47]
Behura, S.K. and Whitfield, C.W. (2010) Correlated Expression Patterns of microRNA Genes with Age-Dependent Behavioural Changes in Honeybee. Insect Molecular Biology, 19, 431-439. https://doi.org/10.1111/j.1365-2583.2010.01010.x
[48]
Greenberg, J.K., Xia, J., Zhou, X., Thatcher, S.R., Gu, X., Ament, S.A. and Ben-Shahar, Y. (2012) Behavioral Plasticity in Honey Bees Is Associated with Differences in Brain microRNA Transcriptome. Genes, Brain and Behavior, 11, 660-670. https://doi.org/10.1111/j.1601-183X.2012.00782.x
[49]
Liu, F., Peng, W., Li, Z., Li, W., Li, L., Pan, J., Su, S., et al. (2012) Next-Generation Small RNA Sequencing for microRNAs Profiling in Apis mellifera: Comparison between Nurses and Foragers. Journal of Insect Behavior, 21, 297-303. https://doi.org/10.1111/j.1365-2583.2012.01135.x
[50]
Shi, Y.Y., Wu, X.B., Huang, Z.Y., Wang, Z.L., Yan, W.Y. and Zeng, Z.J. (2012) Epigenetic Modification of Gene Expression in Honey Bees by Heterospecific Gland Secretions. PLoS ONE, 7, e43727. https://doi.org/10.1371/journal.pone.0043727
[51]
Weaver, D.B., Anzola, J.M., Evans, J.D., Reid, J.G., Reese, J.T., Childs, K.L., Elsik, C.G., et al. (2007) Computational and Transcriptional Evidence for microRNAs in the Honey Bee Genome. Genome Biology, 8, 1-12. https://doi.org/10.1186/gb-2007-8-6-r97
[52]
Collins, D.H., Mohorianu, I., Beckers, M., Moulton, V., Dalmay, T. and Bourke, A.F. (2017) MicroRNAs Associated with Caste Determination and Differentiation in a Primitively Eusocial Insect. Scientific Reports, 7, Article No. 45674. https://doi.org/10.1038/srep45674
[53]
Ren, Z., Yu, J., Wu, Z., Si, W., Li, X., Liu, Y., Chen, D., et al. (2018) MicroRNA-210-5p Contributes to Cognitive Impairment in Early Vascular Dementia Rat Model through Targeting Snap25. Frontiers in Molecular Neuroscience, 11, 388. https://doi.org/10.3389/fnmol.2018.00388
[54]
Biswas, S., Russell, R.J., Jackson, C.J., Vidovic, M., Ganeshina, O., Oakeshott, J.G. and Claudianos, C. (2008) Bridging the Synaptic Gap: Neuroligins and Neurexin I in Apis mellifera. PLoS ONE, 3, e3542. https://doi.org/10.1371/journal.pone.0003542
[55]
Qian, J., Tu, R., Yuan, L. and Xie, W. (2016) Intronic miR-932 Targets the Coding Region of Its Host Gene, Drosophila neuroligin2. Experimental Cell Research, 344, 183-193. https://doi.org/10.1016/j.yexcr.2016.01.017
[56]
Lin, Q., Wei, W., Coelho, C.M., Li, X., Baker-Andresen, D., Dudley, K., Bredy, T.W., et al. (2011) The Brain-Specific microRNA miR-128b Regulates the Formation of Fear-Extinction Memory. Nature Neuroscience, 14, 1115. https://doi.org/10.1038/nn.2891
[57]
Fink, C.C., Bayer, K.U., Myers, J.W., Ferrell Jr., J.E., Schulman, H. and Meyer, T. (2003) Selective Regulation of Neurite Extension and Synapse Formation by the β But Not the α Isoform of CaMKII. Neuron, 39, 283-297. https://doi.org/10.1016/S0896-6273(03)00428-8
[58]
Seeley, T.D. (1995) The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Harvard University Press, Cambridge.
[59]
Simonnet, M.M., Berthelot-Grosjean, M. and Grosjean, Y. (2014) Testing Drosophila Olfaction with a Y-Maze Assay. Journal of Visualized Experiments, 88, e51241. https://doi.org/10.3791/51241
[60]
Smith, B.H., Abramson, C.I. and Tobin, T.R. (1991) Conditional Withholding of Proboscis Extension in Honeybees (Apis mellifera) during Discriminative Punishment. Journal of Comparative Psychology, 105, 345. https://doi.org/10.1037/0735-7036.105.4.345
[61]
Abramson, C.I. and Boyd, B.J. (2001) An Automated Apparatus for Conditioning Proboscis Extension in Honey Bees, Apis mellifera L. Journal of Entomological Science, 36, 78-92. https://doi.org/10.18474/0749-8004-36.1.78
[62]
Hitesh, V.D. and Abramson, C.I. (2020) The Use of 3D Printing in Comparative Research and Teaching. International Journal of Comparative Psychology, 33, 1-8. https://doi.org/10.46867/ijcp.2020.33.05.12
[63]
Wells, H., Wells, P.H. and Smith, D.M. (1981) Honeybee Responses to Reward Size and Colour in an Artificial Flower Patch. Journal of Apicultural Research, 20, 172-179. https://doi.org/10.1080/00218839.1981.11100493