全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

线性延时系统的参数辨识及其在电路模型中的应用
Parameter Identification of Linear Delay System and Its Application in Circuit Model

DOI: 10.12677/PM.2021.113046, PP. 346-356

Keywords: 线性延时系统,参数辨识,最小二乘方法,Gauss-Newton法,电路模型
Linear Delay System
, Parameter Identification, Least Square Method, Gauss-Newton Method,Circuit Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究一类具有未知延时的线性系统的参数辨识问题。辨识问题包括延时估计和系统参数估计。首先,把延时和参数估计问题转化为具有遗忘因子的关于延时的非线性优化问题,借助Gauss-Newton法得到延时的估计,进而基于最小二乘方法得到系统参数估计。该辨识问题以实际电路系统为研究对象,充分考虑了延时和实际噪声的影响。最后,通过搭建实际电路系统,并以其输入和状态值作为实际测量数据,用本文所提辨识方法进行延时和系统参数辨识。验证结果表明了带有延时的线性微分方程模型的科学性和辨识方法的有效性。
In this paper, the problem of parameter identification for a class of linear systems with unknown delay is studied. The identification problem includes the estimation of delay and system parame-ters. Firstly, the estimation of delay and parameters is transformed into a nonlinear optimization problem with forgetting factor, and the estimation of delay is obtained by Gauss-Newton method, then the parameters of the system are estimated based on the least square method. The problem of parameter identification takes the real circuit system as the research object and considers the effect of delay and real noise sufficiently. Finally, by building an actual circuit system and taking its input and state values as actual measurement data, the identification algorithm proposed in this paper is used to identify the delay and system parameters. The results show that the linear differential equation model with time delay is scientific and the method of identification is effective.

References

[1]  Ljung, L. (2002) System Identification: Theory for the User. Tsinghua University Press, Beijing.
[2]  马皓, 毛兴云, 徐德鸿. 基于混杂系统模型的DC/DC电力电子电路参数辨识[J]. 中国电机工程学报, 2005, 25(10): 50-54.
[3]  Astrom, K.J. and Eykhoff, P. (1971) System Identification—A Survey. Automatica, 7, 123-162.
https://doi.org/10.1016/0005-1098(71)90059-8
[4]  方崇智, 萧德云. 过程辨识[M]. 北京: 清华大学出版社, 1988.
[5]  吴小慧, 张兴敢. 锂电池二阶RC等效电路模型参数辨识[J]. 南京大学学报(自然科学), 2020, 56(5): 754-761.
[6]  荀倩, 王培良, 李祖欣, 蔡志端, 秦海鸿. 基于递推最小二乘法的永磁伺服系统参数辨识[J]. 电工技术学报, 2016, 31(17): 161-169.
[7]  韩伟, 王宏华, 王成亮, 陈凌, 张经炜, 孙蓉. 基于参数辨识的光伏组件故障诊断模型[J]. 电网技术, 2015, 39(5): 1198-1204.
[8]  张旭辉, 林海军, 刘明珠, 高豹江. 基于蚁群粒子群优化的卡尔曼滤波算法模型参数辨识[J]. 电力系统自动化, 2014, 38(4): 44-50.
[9]  胡海岩, 王在华. 非线性时滞动力系统的研究进展[J]. 力学进展, 1999, 29(4): 501-501.
[10]  赵宁, 孟新柱. 一类具有时滞的随机SIS传染病模型[J]. 应用数学, 2018, 128(1): 220-224.
[11]  Yue, D. and Han, Q.L. (2004) A Delay-Dependent Stability Criterion of Neutral Systems and Its Application to a Partial Element Equivalent Circuit Model. IEEE Transactions on Circuits and Systems II: Express Briefs, 51, 685-689.
https://doi.org/10.1109/TCSII.2004.837286
[12]  Han, W. and Liu, M. (2011) Stability and Bifurcation Analysis for a Discrete-Time Model of Lotka-Volterra Type with Delay. Applied Mathematics and Computation, 217, 5449-5457.
https://doi.org/10.1016/j.amc.2010.12.014
[13]  Bélair, J., Campbell, S.A. and van den Driessche, P. (1996) Frustration, Stability, and Delay-Induced Oscillations in a Neural Network Model. SIAM Journal on Applied Mathematics, 56, 245-255.
https://doi.org/10.1137/S0036139994274526
[14]  Zhou, B., Li, Z.Y., Zheng, W.X. and Duan, G.R. (2012) Stabi-lization of Some Linear Systems with Both State and Input Delays. Systems & Control Letters, 61, 989-998.
https://doi.org/10.1016/j.sysconle.2012.07.006
[15]  Gawthrop, P.J. and Nihtil, M.T. (1985) Identification of Time Delays Using a Polynomial Identification Method. Systems & Control Letters, 5, 267-271.
https://doi.org/10.1016/0167-6911(85)90020-9
[16]  Danilevich, E.V., Evstratov, A.R., Kukharenko, N.I., Ovcharenko, V.N. and Poplavskii, B.K. (2018) Identification of Constant Parameters of Dynamic Systems by a Time-Frequency Method. Journal of Computer and Systems Sciences International, 57, 495-504.
https://doi.org/10.1134/S1064230718040068
[17]  Sung, S.W. and Lee, I.B. (2013) Prediction Error Identification Method for Continuous-Time Processes with Time Delay. Industrial & Engineering Chemistry Research, 40, 5743-5751.
https://doi.org/10.1021/ie0100636
[18]  Orlov, Y., Belkoura, L., Richard, J.P. and Dambrine, M. (2003) Adaptive Identification of Linear Time-Delay Systems. International Journal of Robust and Nonlinear Control, 13, 857-872.
https://doi.org/10.1002/rnc.850
[19]  Ren, X., Rad, A., Chan, P. and Lo, W.L. (2005) Online Identification of Continuous-Time Systems with Unknown Time Delay. IEEE Transactions on Automatic Control, 50, 1418-1422.
https://doi.org/10.1109/TAC.2005.854640
[20]  Dong, S., Liu, T. and Chen, F. (2015) Iterative Identification of Output Error Model with Time Delay. IFAC-PapersOnLine, 48, 888-893.
https://doi.org/10.1016/j.ifacol.2015.09.082

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133