|
一类快慢耦合Duffing-van der Pol系统的平衡点分析
|
Abstract:
[1] | Xu, Y., et al. (2011) Stochastic Bifurcations in a Bistable Duffing-Van der Pol Oscillator with Colored Noise. Physical Review E, 83, Article ID: 056215. https://doi.org/10.1103/PhysRevE.83.056215 |
[2] | Li, C., et al. (2013) Response Probability Density Functions of Duffing-Van der Pol Vibro-Impact System under Correlated Gaussian White Noise Excitations. Physics A, 392, 1269-1279. https://doi.org/10.1016/j.physa.2012.11.053 |
[3] | Zhang, C., et al. (2014) On Two-Parameter Bifurcation Analysis of Switched System Composed of Duffing and van der Pol Oscillators. Communications in Nonlinear Science and Numerical Simulation, 19, 750-757.
https://doi.org/10.1016/j.cnsns.2013.06.028 |
[4] | Zhou, L. and Chen, F. (2014) Chaotic Motions of the Duffing-Van der Pol Oscillator with External and Parametric Excitations. Shock and Vibration, 2014, Article ID: 131637. https://doi.org/10.1155/2014/131637 |
[5] | Kumar, P., Narayanan, S. and Gupta, S. (2016) Stochastic Bifurcations in a Vibro-Impact Duffing-Van der Pol Oscillator. Nonlinear Dynamics, 85, 439-452. https://doi.org/10.1007/s11071-016-2697-1 |
[6] | Li, S., Niu, J. and Li, X. (2018) Primary Resonance of Fractional-Order Duffing-van der Pol Oscillator by Harmonic Balance Method. Chinese Physics B, 27, 211-216. https://doi.org/10.1088/1674-1056/27/12/120502 |
[7] | 高发宝, 王永青. 一类五次非线性系统的全局动力学[J]. 动力系统与控制, 2020, 9(4): 207-213. |
[8] | 陈乐颀. 一类带有超越功能反应的捕食者-食饵系统的平衡点分析[J]. 内江师范学院学报, 2020, 35(4): 34-37. |
[9] | 张远达. 浅谈高次方程[M]. 武汉: 湖北教育出版社, 1983. |
[10] | 林文业. 现代数学与量子力学[M]. 郑州: 郑州大学出版社, 2010. |
[11] | 秦小兵. 关于高次方程根的研究[J]. 基础教育课程, 2017(10): 65-67. |
[12] | 姜海馨, 姜玉秋. 论一元高次方程的近似求解[J]. 文存阅刊, 2017(1): 37, 39. |
[13] | 范盛金. 一元三次方程的新求根公式与新判别法[J]. 海南师范学院学报, 1989(2): 91-98. |
[14] | 刘延彬, 陈予恕. 余维4的Duffing-Van der Pol方程全局分岔分析[J]. 振动与冲击, 2011, 30(1): 69-72, 110. |