|
Material Sciences 2021
双环氧交联改性黄原胶的制备及流变性能研究
|
Abstract:
为了增强黄原胶在油田开采中的使用性能,本工作以1,4-丁二醇二缩水甘油醚等交联剂分别与黄原胶反应,制备了交联改性黄原胶;对产物结构及其流变性能进行了表征,并对其作为压裂液的基本性能进行了研究。结果表明:改性后黄原胶样品溶液的各项性能显著提高,当交联剂占黄原胶质量的7wt%时,改性后样品溶液的表观粘度增加最大可达6.9倍,优于目前文献报道;同时其剪切变稀特性、粘弹性、触变性、耐温耐剪切性、耐盐性和携砂性能等综合性能明显改善。本研究产物在石油开采中具有良好的应用前景。
To enhance the performance of xanthan gum in oilfield exploitation, the crosslinking modified xanthan gum was prepared through the reaction of 1,4-butanediol diglycidyl ether etc. with xan-than gum. The structure and rheological properties of the product were characterized, and its basic properties as fracturing fluid were investigated. The results showed that the properties of the modified xanthan solution were significantly improved. When the cross-linking agent accounted for 7 wt% of the mass of xanthan, the apparent viscosity of the modified sample solution increased up to 6.9 times, much better than the current literature reports; and the comprehensive properties such as shear thinning, viscoelasticity, thixotropy, temperature resistance, shear resistance, salt resistance and sand carrying capacity were significantly improved. The product has a good applica-tion in the field of oil exploitation.
[1] | 郭瑞, 丁恩勇. 黄原胶的结构、性能与应用[J]. 日用化学工业, 2006, 36(1): 42-45. |
[2] | 王斌, 周迅. 三次采油技术在中原油田的应用进展[J]. 油田化学, 2020: 37(3): 552-556. |
[3] | Quan, H., Hu, Y., Huang, Z. and Duan, W. (2019) Preparation and Property Evaluation of a Hydrophobically Modified Xanthan Gum XG-C16. Journal of Dispersion Science and Technology, 41, 656-666.
https://doi.org/10.1080/01932691.2019.1610425 |
[4] | Roy, A., Comesse, S., Grisel, M., Hucher, N., Souguir, Z. and Renou, F. (2014) Hydrophobically Modified Xanthan: An Amphiphilic but Not Associative Polymer. Biom-acromolecules, 15, 1160-1170. https://doi.org/10.1021/bm4017034 |
[5] | Zheng, M., Lian, F., Zhu, Y., et al. (2019) pH-Responsive Poly (Xanthan Gum-g-Acrylamide-g-Acrylic Acid) Hydrogel: Preparation, Characterization, and Application. Carbohydrate Polymers, 210, 38-46.
https://doi.org/10.1016/j.carbpol.2019.01.052 |
[6] | 胡静璇, 周爱军, 管政, 等. 黄原胶改性三元共聚高吸水树脂的制备及其生物降解性能[J]. 化工新型材料, 2016, 44(4): 143-145. |
[7] | Petri, D.F.S. (2015) Xanthan Gum: A Versatile Biopolymer for Biomedical and Technological Applications. Journal of Applied Polymer Science, 132, 42035. https://doi.org/10.1002/app.42035 |
[8] | 刘茹, 李海平, 侯万国. 三偏磷酸钠交联黄原胶的制备及其溶液流变性[J]. 应用化学, 2015, 32(9): 1061-1069. |
[9] | Zhang, H., Fang, B., Lu, Y., et al. (2017) Rheological Prop-erties of Water-Soluble Cross-Linked Xanthan Gum. Journal of Dispersion Science and Technology, 38, 361-366. https://doi.org/10.1080/01932691.2016.1169929 |
[10] | Pi, G., Li, Y., Bao, M., et al. (2016) Novel and Envi-ronmentally Friendly Oil Spill Dispersant Based on the Synergy of Biopolymer Xanthan Gum and Silica Nanopar-ticles. ACS Sustainable Chemistry and Engineering, 4, 3095-3102.
https://doi.org/10.1021/acssuschemeng.6b00063 |
[11] | Milas, M., Rinaudo, M., Duplessix, R., Borsali, R. and Lindner, P. (1995) Small Angle Neutron Scattering from Polyelectrolyte Solutions: From Disordered to Ordered Xanthan Chain Conformation. Macromolecules, 28, 3119-3124.
https://doi.org/10.1021/ma00113a014 |
[12] | 张华. 现代有机波谱分析[M]. 北京: 化学工业出版社教材出版中心, 2005: 265-267. |
[13] | Yahoum, M.M., Moulai-Mostefa, N. and Le Cerf, D. (2016) Synthesis, Physicochemical, Structural and Rheological Characterizations of Carboxymethyl Xanthan Derivatives. Carbohydrate Polymers, 154, 267-275.
https://doi.org/10.1016/j.carbpol.2016.06.080 |
[14] | Reinoso, D., Martín-Alfonso, M.J., Luckham, P.F. and Martínez-Boza, F.J. (2019) Rheological Characterisation of Xanthan Gum in Brine Solutions at High Temperature. Carbohydrate Polymers, 203, 103-109.
https://doi.org/10.1016/j.carbpol.2018.09.034 |
[15] | Cross, M.M. (1965) Rheology of Non-Newtonian Fluids: A New Flow Equation for Pseudoplastic Systems. Journal of Colloid Science, 20, 417-437. https://doi.org/10.1016/0095-8522(65)90022-X |
[16] | 张洪, 卢拥军, 方波. 阳离子黄原胶的合成及性能评价[J]. 油田化学, 2017, 34(1): 33-37. |
[17] | Liang, K., Han, P., Chen, Q., Su, X. and Feng, Y. (2019) Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer. ACS Omega, 4, 10620-10628.
https://doi.org/10.1021/acsomega.9b00717 |