全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黑色TiO2制备及表征技术研究进展
Progress in Preparation and Characterization of Black TiO2

DOI: 10.12677/MS.2021.113031, PP. 247-261

Keywords: 黑色TiO2,合成,分析表征
Black TiO2
, Synthesis, Analysis and Characterization

Full-Text   Cite this paper   Add to My Lib

Abstract:

黑色二氧化钛与普通的白色TiO2相比,具有改善的光学吸收性能,有利于太阳光谱的紫外到红外区域的太阳能吸收,被认为具有吸收整个太阳光谱范围的潜能,在多个领域具有广泛的应用。文中综述了黑色二氧化钛纳米材料的各种合成方法及其物相、形态和电子结构的综合表征技术,以期能够准确的表征黑色二氧化钛结构特征,为黑色TiO2的制备提供指导。
Black TiO2 used in many fields facilitates the maximum solar energy absorption from ultraviolet (UV) to infrared (IR) due to their improved optical absorption properties in comparison to the normal white TiO2, which is considered that black TiO2 has the potential to absorb the whole solar spectrum. In this paper, the synthesis methods of black TiO2 nanomaterials and the comprehensive characterization technology of its phase, morphology and electronic structure are reviewed in or-der to accurately analyze the structural characteristics of black TiO2 and provide guidance for the preparation of black TiO2.

References

[1]  Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[2]  Yan, X. and Chen, X. (2015) Titanium Dioxide Nanomaterials in Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons, Hoboken, 1-38.
https://doi.org/10.1002/9781119951438.eibc2335
[3]  Lin, Y.H., Weng, C.H., Tzeng, J.H., et al. (2016) Ad-sorption and Photocatalytic Kinetics of Visible-Light Response N-Doped TiO2 Nanocatalyst for Indoor Acetaldehyde Removal under Dark and Light Conditions. International Journal of Photoenergy, 2016, Article ID: 3058429.
https://doi.org/10.1155/2016/3058429
[4]  Kapilashrami, M., Zhang, Y., Liu, Y.-S., et al. (2014) Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. Chemical Reviews, 114, 9662-9707.
https://doi.org/10.1021/cr5000893
[5]  Fu, Y., Sun, D., Chen, Y., et al. (2012) An Amine-Functionalized Ti-tanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. An-gewandte Chemie International Edition, 51, 3364-3367.
https://doi.org/10.1002/anie.201108357
[6]  Dahl, M., Liu, Y. and Yin, Y. (2014) Composite Titanium Dioxide Nanomaterials. Chemical Reviews, 114, 9853-9889.
https://doi.org/10.1021/cr400634p
[7]  Chen, X.B., Liu, L., Yu, P.Y., et al. (2011) Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331, 746-750.
https://doi.org/10.1126/science.1200448
[8]  Jiang, X.D., Zhang, Y.P., Jiang, J., et al. (2012) Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study. The Journal of Physical Chemistry C, 116, 22619-22624.
https://doi.org/10.1021/jp307573c
[9]  Ullattil, S.G., Narendranathc, S.B., et al. (2018) Black TiO2 Nano-materials: A Review of Recent Advances. Chemical Engineering Journal, 343, 708-736.
https://doi.org/10.1016/j.cej.2018.01.069
[10]  Leshuk, T., Parviz, R., Everett, P., et al. (2013) Photocatalytic Activity of Hydrogenated TiO2. ACS Applied Materials & Interfaces, 5, 1892-1895.
https://doi.org/10.1021/am302903n
[11]  Sinhamahapatra, A., Jeon, J.P. and Yu, J.S. (2015) A New Approach to Prepare Highly Active and Stable Black Titania for Visible Light-Assisted Hydrogen Production. Energy & En-vironmental Science, 8, 3539-3544.
https://doi.org/10.1039/C5EE02443A
[12]  Zhu, Y., Liu, D. and Meng, M. (2014) H2 Spillover Enhanced Hy-drogenation Capability of TiO2 Used for Photocatalytic Splitting of Water: A Traditional Phenomenon for New Applications. Chemical Communications, 50, 6049-6051.
https://doi.org/10.1039/C4CC01667J
[13]  Grabstanowicz, L.R., Gao, S., Li, T., et al. (2013) Facile Oxidative Conversion of TiH2 to High-Concentration Ti(3+)- Self-Doped Rutile TiO2 with Visible-Light Photoactivity. Inor-ganic Chemistry, 52, 3884-3890.
https://doi.org/10.1021/ic3026182
[14]  Wang, Z., Yang, C.Y., Lin, T.Q., et al. (2013) H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Advanced Functional Materials, 23, 5444-5450.
https://doi.org/10.1002/adfm.201300486
[15]  Teng, F., Li, M., Gao, C., et al. (2014) Preparation of Black TiO2 by Hydrogen Plasma Assisted Chemical Vapor Deposition and Its Photocatalytic Activity. Applied Catalysis B En-vironmental, 148-149, 339-343.
https://doi.org/10.1016/j.apcatb.2013.11.015
[16]  Yan, Y., Hao, B., Wang, D., et al. (2013) Understanding the Fast Lithium Storage Performance of Hydrogenated TiO2 Nanoparticles. Journal of Materials Chemistry A, 1, 14507-14513.
https://doi.org/10.1039/c3ta13491a
[17]  Kang, Q., Cao, J., Zhang, Y., et al. (2013) Reduced TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting. Journal of Materials Chemistry A, 1, 5766-5774.
https://doi.org/10.1039/c3ta10689f
[18]  Tan, H., Zhao, Z., Niu, M., et al. (2014) A Facile and Versatile Method for Preparation of Colored TiO2 with Enhanced Solar-Driven Photocatalytic Activity. Nanoscale, 6, 10216-10223.
https://doi.org/10.1039/C4NR02677B
[19]  Wang, Z., Yang, C., Lin, T., et al. (2013) Visible-Light Photocata-lytic, Solar Thermal and Photoelectrochemical Properties of Aluminium-Reduced Black Titania. Energy & Envi-ronmental Science, 6, 3007-3014.
https://doi.org/10.1039/c3ee41817k
[20]  Lin, T., Yang, C., Wang, Z., et al. (2014) Effective Nonmetal Incor-poration in Black Titania with Enhanced Solar Energy Utilization. Energy & Environmental Science, 7, 967.
https://doi.org/10.1039/c3ee42708k
[21]  Cui, H., Zhao, W., Yang, C., et al. (2014) Black TiO2 Nanotube Arrays for High-Efficiency Photoelectrochemical Water-Splitting. Journal of Materials Chemistry A, 2, 8612-8616.
https://doi.org/10.1039/C4TA00176A
[22]  Liu, X., Gao, S.M., Xu, H., et al. (2013) Green Synthetic Approach for Ti3+Self-Doped TiO2?x Nanoparticles with Efficient Visible Light Photocatalytic Activity. Nanoscale, 5, 1870-1875.
https://doi.org/10.1039/c2nr33563h
[23]  Kako, T., Umezawa, N., Xie, K., et al. (2013) Undoped Visible-Light-Sensitive Titania Photocatalyst. Journal of Materials Science, 48, 108-114.
https://doi.org/10.1007/s10853-012-6888-y
[24]  Xu, C., Song, Y., Lu, L., et al. (2013) Electrochemically Hy-drogenated TiO2 Nanotubes with Improved Photoelectrochemical Water Splitting Performance. Nanoscale Research Letters, 8, 391.
https://doi.org/10.1186/1556-276X-8-391
[25]  Zhang, Z., Hedhili, M.N., Zhu, H., et al. (2013) Electrochemical Reduction Induced Self-Doping of Ti3+ for Efficient Water Splitting Performance on TiO2 Based Photoelectrodes. Physical Chemistry Chemical Physics, 15, 15637-15644.
https://doi.org/10.1039/c3cp52759j
[26]  Chen, B., Beach, J.A., Maurya, D., et al. (2014) Fabrication of Black Hierarchical TiO2 Nanostructures with Enhanced Photocatalytic Activity. RSC Advances, 4, 29443.
https://doi.org/10.1039/C4RA04260C
[27]  Zhao, Z., Tan, H., Zhao, H., et al. (2014) Reduced TiO2 Rutile Nanorods with Well-Defined Facets and Their Visible-Light Photocatalytic Activity. Chemical Communications, 50, 2755.
https://doi.org/10.1039/C3CC49182J
[28]  Chen, S., Tao, J., Tao, H., et al. (2016) One-Step Solvothermal Synthesis of Black TiO2 Films for Enhanced Visible Absorption. Journal of Nanoscience and Nanotechnology, 16, 3146-3149.
https://doi.org/10.1166/jnn.2016.10864
[29]  Yan, B., Zhou, P., Xu, Q., Zhou, X., Xu, D. and Zhu, J. (2016) Engineering Disorder into Exotic Electronic 2D TiO2 Nanosheets for Enhanced Photocatalytic Performance. RSC Advances, 6, 6133.
https://doi.org/10.1039/C5RA24126J
[30]  Xin, X., Xu, T., Wang, L., et al. (2016) Ti3+-Self Doped Brookite TiO2 Single-Crystalline Nanosheets with High Solar Absorption and Excellent Photo-catalytic CO2 Reduction. Scientific Reports, 6, Article No. 23684.
https://doi.org/10.1038/srep23684
[31]  Tian, Z., Cui, H., Zhu, G., et al. (2016) Hydrogen Plasma Reduced Black TiO2B Nanowires for Enhanced Photoelectrochemical Water-Splitting. Journal of Power Sources, 325, 697-705.
https://doi.org/10.1016/j.jpowsour.2016.06.074
[32]  Shan, Y., Yang, Y., Cao, Y., et al. (2015) Hy-drogenated Black TiO2 Nanowires Decorated with Ag Nanoparticles as Sensitive and Reusable Surface-Enhanced Raman Scattering Substrates. RSC Advances, 5, 34737-34743.
https://doi.org/10.1039/C5RA04352B
[33]  Zimbone, M., Cacciato, G., Sanz, R., et al. (2016) Black TiOx Pho-tocatalyst Obtained by Laser Irradiation in Water. Catalysis Communications, 84, 11-15.
https://doi.org/10.1016/j.catcom.2016.05.024
[34]  Lu, X., Chen, A., Luo, Y., Lu, P., Dai, Y., Enriquez, E., Dowden, P., Xu, H., Kotula, P.G., Azad, A.K. and Yarotski, D.A. (2016) Conducting Interface in Oxide Homo-junction: Understanding of Superior Properties in Black TiO2. Nano Letters, 16, 5751.
https://doi.org/10.1021/acs.nanolett.6b02454
[35]  Panomsuwan, G., Watthanaphanit, A., Ishizaki, T., et al. (2015) Water-Plasma-Assisted Synthesis of Black Titania Spheres with Efficient Visible-Light Photocatalytic Ac-tivity. Physical Chemistry Chemical Physics, 17, 13794-13799.
https://doi.org/10.1039/C5CP00171D
[36]  Eom, J.Y., Lim, S.J., Lee, S.M., Ryu, W.H. and Kwon, H.S. (2015) Black Titanium Oxide Nanoarray Electrodes for High Rate Li-Ion Microbatteries. Journal of Materials Chemistry A, 3, 11183-11188.
https://doi.org/10.1039/C5TA01718A
[37]  Zhu, G., Xu, J., Zhao, W., et al. (2016) Constructing Black Titania with Unique Nanocage Structure for Solar Desalination. ACS Applied Materials & Interfaces, 8, 31716-31721.
https://doi.org/10.1021/acsami.6b11466
[38]  Sanz, R., Romano, L., Zimbone, M., et al. (2015) UV-Black Ru-tile TiO2: An Antireflective Photocatalytic Nanostructure. Journal of Applied Physics, 117, 515-3126.
https://doi.org/10.1063/1.4913222
[39]  Chen, X.B., Liu, L., Liu, Z., et al. (2013) Properties of Disor-der-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation. Scientific Reports, 3, Article No. 1510.
https://doi.org/10.1038/srep01510
[40]  Xia, T. and Chen, X. (2013) Revealing the Structural Properties of Hydrogenated Black TiO2 Nanocrystals. Journal of Materials Chemistry A, 1, 2983-2989.
https://doi.org/10.1039/c3ta01589k
[41]  Yan, Y., Han, M., Konkin, A., et al. (2014) Slightly Hydrogenated TiO2 with Enhanced Photocatalytic Performance. Journal of Materials Chemistry A, 2, 12708-12716.
https://doi.org/10.1039/C4TA02192D
[42]  Ye, M., Jia, J., Wu, Z., et al. (2017) Synthesis of Black TiOx Na-noparticles by Mg Reduction of TiO2 Nanocrystals and Their Application for Solar Water Evaporation. Advanced Energy Materials, 7, 1601811.1-1601811.7.
https://doi.org/10.1002/aenm.201601811
[43]  Tian, M., Mahjouri-Samani, M., Eres, G., et al. (2015) Structure and Formation Mechanism of Black TiO2 Nanoparticles. Acs Nano, 9, 10482-10488.
https://doi.org/10.1021/acsnano.5b04712
[44]  Periyat, P. and Ullattil, S.G. (2015) Green Microwave Switching from Oxygen Rich Yellow Anatase to Oxygen Vacancy Rich Black Anatase TiO2 Solar Photocatalyst Using Mn(II) as “Anatase Phase Purifier”. Nanoscale, 7, 19184-19192.
https://doi.org/10.1039/C5NR05975E
[45]  An, H.-R., Park, S.Y., Kim, H., Lee, C.Y., Choi, S., Lee, S.C., et al. (2016) Advanced Nanoporoustio TiO2 Photocatalysts by Hydrogen Plasma for Efficient Solar-Light Photocatalytic Application. Scientific Reports, 6, Article No. 29683.
https://doi.org/10.1038/srep29683
[46]  Wagner, C.D., Briggs, W.M., Davis, L.E., et al. (1979) Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corp., Eden Prairie, 298.
[47]  Li, F., Han, T., Wang, H., et al. (2017) Morphology Evolution and Visible Light Driven Photocatalysis Study of Ti31 Self-Doped TiO2?x Nanocrystals. Journal of Materials Research, 32, 1563.
https://doi.org/10.1557/jmr.2017.49
[48]  Lazarus, M.S. and Sham, T.K. (1982) X-Ray Photoelectron Spectroscopy (XPS) Studies of Hydrogen Reduced Rutile (TiO2?x) Surfaces. Chemical Physics Letters, 92, 670-674.
https://doi.org/10.1016/0009-2614(82)83672-5
[49]  Zheng, Z., Huang, B., Lu, J., et al. (2012) Hydrogenated Titania: Synergy of Surface Modification and Morphology Improvement for Enhanced Photocatalytic Activity. Chemical Communications, 48, 5733.
https://doi.org/10.1039/c2cc32220j
[50]  Turkovic, A., Ivanda, M., Drasner, A., et al. (1991) Raman Spectros-copy of Thermally Annealed TiO2 Thin Films. Thin Solid Films, 198, 199-205.
https://doi.org/10.1016/0040-6090(91)90338-X
[51]  Prokes, S.M., Gole, J.L., Chen, X.B., et al. (2010) De-fect-Related Optical Behavior in Surface Modified TiO2 Nanostructures. Advanced Functional Materials, 15, 161-167.
https://doi.org/10.1002/adfm.200305109
[52]  Kumar, P.M., Badrinarayanan, S. and Sastry, M. (2000) Nano-crystalline TiO2 Studied by Optical, FTIR and X-Ray Photoelectron Spectroscopy: Correlation to Presence of Surface States. Thin Solid Films, 358, 122-130.
https://doi.org/10.1016/S0040-6090(99)00722-1
[53]  Szczepankiewicz, S.H., Colussi, A.J. and Hoffmann, M.R. (2000) Infrared Spectra of Photoinduced Species on Hydroxylated Titania Surfaces. Journal of Physical Chemistry B, 104, 9842-9850.
https://doi.org/10.1021/jp0007890

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133