全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

气象要素对最热月用电量的影响
Influence of Meteorological Elements on Electricity Consumption in the Hottest Month

DOI: 10.12677/CCRL.2021.102016, PP. 130-135

Keywords: 最热月用电量,气象要素,变化关系,预测分析
Electricity Consumption in the Hottest Month
, Meteorological Factors, Relationship between Changes, Forecast Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用石家庄地区2007~2019年最热月气温、空气湿度、风速、大风、降水与社会用电量数据,采用线性趋势、相关系数、多元回归和对比分析等统计方法,分析了最热月相关气象要素与社会用电量的变化关系。结果表明:近年来石家庄夏季社会用电量呈明显增长趋势,最热月增长趋势最为明显;以市区及其周边地区为高用电量中心,向周边各县市逐渐减少,东南部较西北部偏高。全市和各区域最热月平均气温、最高气温、最低气温与气象用电量呈明显正相关,正相关性市区较各区域更为明显;东部平原最热月平均风速与气象用电量呈明显正相关。利用SPSS软件对全市和各区域逐年最热月相关气象要素数据与气象用电量进行多元逐步线性回归分析,得到气象用电量的回归预测方程。通过全市和各区域逐年最热月预测社会用电量与实际社会用电量的对比误差分析,表明预测社会用电量平均误差在3%以内。
By using the data of air temperature, air humidity, wind speed, high wind, precipitation and social electricity consumption of the hottest month from 2007 to 2019 in Shijiazhuang, and using statistical methods such as linear trend, correlation coefficient, multiple regression and comparative analysis, the relationship between meteorological factors related to the hottest month and social electricity consumption was analyzed. The results show that, in recent years, the social electricity consumption in summer in Shijiazhuang showed an obvious growth trend having the most obvious growth trend in the hottest month. With the urban area and its surrounding areas as the center of high electricity consumption, it gradually decreased to surrounding counties and cities, and the southeast was higher than the northwest. The average temperature, maximum temperature and minimum temperature of the hottest month in the whole city and all regions were positively correlated with meteorological electricity consumption, and the positive correlation was more obvious in urban areas than in other regions. The average wind speed of the hottest month in the eastern plain was positively correlated with the meteorological electricity consumption. SPSS software was used to carry out multivariate stepwise linear regression analysis of meteorological elements data and meteorological electricity consumption in the hottest month of the whole city and each region year by year, and the regression prediction equation of meteorological electricity consumption was obtained. Through the comparison error analysis of predicting social electricity consumption and actual social electricity consumption in the hottest month of each year in the whole city and each region, it showed that the average error of predicting social electricity consumption was within 3%.

References

[1]  连志鸾, 尤凤春. 石家庄高温闷热天气气候特征与预报方法[J]. 气象, 2005, 31(6): 55-60.
[2]  钟利华, 周邵毅, 邓英姿, 等. 广西近年高温干旱气象灾害及对电力供求的影响[J]. 灾害学, 2007, 22(3): 81-84.
[3]  陈正洪, 洪斌. 华中电网四省日用电量与气温关系的评估[J]. 地理学报, 2000, 55(增刊): 34-38.
[4]  张树林. 高温天气对输电设备的影响及应对措施[J]. 山西电力, 2011(3): 35-37.
[5]  徐冬英, 曾向红, 段丽洁, 等. 湖南省用电需求气象条件等级特征分析[J]. 气象研究与应用, 2014, 35(4): 53-57.
[6]  曲晓黎, 赵娜, 张金满, 等. 春灌期气象条件对河北省南网日用电负荷峰值的影响[J]. 气象与环境学报, 2013, 29(5): 154-158.
[7]  武辉芹, 张金满, 曲晓黎. 河北省南部电网夏季电力负荷特征及与气象因子的关系[J]. 气象科技, 2013, 41(5): 945-948, 964.
[8]  付桂琴, 尤凤春, 曹欣, 等. 积温效应在电力日峰谷负荷中的应用及检验[J]. 应用气象学报, 2015, 26(4): 492-499.
[9]  张彦恒, 杨琳晗, 武辉芹, 等. 冀北电网电力负荷特征与气温的关系[J]. 干旱气象, 2016, 34(5): 881-885.
[10]  栗然, 郭朝云, 韦仲康. 京津唐电网电力日峰荷与气象指数的关联性分析[J]. 电网技术, 2008, 32(6): 87-92.
[11]  林小红, 夏丽花, 黄美金, 等. 福州市夏季电力气象等级预测模型初探[J]. 气象科技, 2006, 34(6): 774-777.
[12]  贺芳芳, 徐家良, 周伟东, 等. 上海地区高温期气象条件对用电影响的评估[J]. 高原气象, 2008, 27(增刊): 210-217.
[13]  韩军彩, 钤伟妙, 李丽燕, 等. 石家庄市极端气温指数变化特征及城市化影响[J]. 自然灾害学报, 2014, 23(5): 231-238.
[14]  肖嗣荣, 张可慧, 刘方圆, 等. 石家庄市高温热浪与“三大火炉”城市的对比研究[J]. 地理与地理信息科学, 2010, 26(5): 87-92.
[15]  杜彦巍, 林莉, 牟道槐, 等. 综合气象指数对电力负荷的影响分析[J]. 重庆大学学报(自然科学版), 2006, 29(12): 56-60.
[16]  洪国平, 胡宗海, 罗学荣, 等. 用电需求气象条件等级[S]. 北京: 气象出版社, 2008.
[17]  张翠华, 张文煜, 张秉祥. 石家庄冻土变化特征与气候因子的关系分析[J]. 南京信息工程大学学报: 自然科学版, 2015, 7(3): 268-271.
[18]  任国玉, 张雷, 卞韬, 等. 城市化对石家庄站日气温变化的影响[J]. 地球物理学报, 2015, 58(2): 398-410.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133