全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离心机方法测定栓塞脆弱性曲线研究进展
Research Progress of Centrifuge Method for Measuring Embolism Vulnerability Curves

DOI: 10.12677/BR.2021.102017, PP. 113-119

Keywords: 离心机,栓塞,栓塞脆弱性曲线,木质部,导管
Centrifuge
, Embolism, Embolism Vulnerability Curves, Xylem, Vessel

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了更好的理解植物木质部栓塞和植物耐旱性之间的关系,人们引入了栓塞脆弱性概念,并通过构建栓塞脆弱性曲线(Vulnerability curves,简称VCs)来描述植物木质部栓塞易损程度。然而目前基于离心机技术构建植物木质部栓塞脆弱性曲线的准确性遭到很多学者的质疑,在使用离心机方法测定植物VCs时,由于开放导管的存在使离心机技术测定的VCs可能是“人工赝品”,不过也有学者在使用离心机方法构建长导管物种的VCs时,得到了准确的VCs。该文就近年来这一研究领域取得的成果及争议问题进行了概括和总结,主要涉及测定VCs的几种离心机方法,离心机方法构建植物VCs的原理以及优缺点,并对未来研究测定木质部栓塞脆弱性与实际运用相关方法的选择等提出了展望。
In order to better understand the relationship between plant xylem embolism and plant drought tolerance, the concept of embolic vulnerability was introduced, and the embolic vulnerability de-gree of plant xylem embolism was described by constructing embolic vulnerability curve (Vulne-rability curves, abbreviated as VCs). However, at present, the accuracy of constructing plant xylem embolism vulnerability curve based on centrifuge technology has been questioned by many scholars. When using centrifuge method to determine plant VCs, due to the existence of open catheter, the VCs determined by centrifuge technology may be “artificial fake”. However, some scholars have obtained accurate VCs when using centrifuge method to construct VCs of long vessel species. This paper summarizes the achievements and controversial issues in this research field in recent years, mainly involving several centrifuge methods for determining VCs, the principle, advantages and disadvantages of constructing plant VCs by centrifuge method, and puts forward the prospect of future research to determine the vulnerability of xylem embolism and the selection of methods related to practical application.

References

[1]  李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2002.
[2]  安锋, 张硕新, 赵平娟. 木本植物木质部栓塞脆弱性研究进展[J]. 西北林学院学报, 2002, 17(3): 30-34.
[3]  Tyree, M.T. and Sperry, J.S. (1989) Vulnerability of Xylem to Cavitation and Embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-38.
https://doi.org/10.1146/annurev.pp.40.060189.000315
[4]  安锋, 兰国玉, 赵平娟. 木质部空穴和栓塞化对植物的影响[J]. 热带农业科学, 2004, 24(6): 53-58, 67.
[5]  Tyree, M.T. and Dixon, M.A. (1986) Water Stress Induced Cavitation and Embolism in Some Woody Plants. Physiologia Plantarum, 66, 397-405.
https://doi.org/10.1111/j.1399-3054.1986.tb05941.x
[6]  Dixon, H.H. (1914) Transpiration and the Ascent of Sap in Plants. Macmillan, London, 558-559.
https://doi.org/10.5962/bhl.title.44194
[7]  Tyree, M.T. and Zimmermann, M.H. (2002) Xylem Structure and the Ascent of Sap. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-04931-0
[8]  安锋, 张硕新, 赵平娟. 8种木本植物木质部栓塞变化与生理生态指标关系的研究与植物木质部水势的关系[J]. 西北植物学报, 2005, 25(8): 1595-1600.
[9]  万贤崇, 孟平. 植物体内水分长距离运输的生理生态学机制[J]. 植物生态学报, 2007, 31(5): 804-813.
[10]  Pivovaroff, A.L., Régis, B., Bruno, L., Cochard, H., Santiago, L.S., Delzon, S., et al. (2016) Testing the “Microbubble Effect” Using the Cavitron Technique to Measure Xylem Water Extraction Curves. AoB PLANTS, 8, plw011.
https://doi.org/10.1093/aobpla/plw011
[11]  李荣, 党维, 蔡靖, 张硕新, 姜在民. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3): 255-263.
[12]  Maherali, H., Pockman, W.T. and Jackson, R.B. (2004) Adaptive Variation the Vulnerability of Woody Plants to Xlem Cavitation. Ecology, 85, 2184-2199.
https://doi.org/10.1890/02-0538
[13]  Sperry, J.S., Donnelly, J.R. and Tyree, M.T. (1988) A Method for Measuring Hydraulic Conductivity and Embolism in Xylem. Plant, Cell & Environment, 11, 35-40.
https://doi.org/10.1111/j.1365-3040.1988.tb01774.x
[14]  Cochard, H. (2002) A Technique for Measuring Xylem Hydraulic Conductance under High Negative Pressures. Plant, Cell & Environment, 25, 815-819.
https://doi.org/10.1046/j.1365-3040.2002.00863.x
[15]  Cochard, H., Cruiziat, P. and Tyree, M.T. (1992) Use of Positive Pressures to Establish Vulnerability Curves: Further Support for the Air-Seeding Hypothesis and Implications for Pressure-Volume Analysis. Plant Physiology, 1, 205-209.
https://doi.org/10.1104/pp.100.1.205
[16]  Van As, H., Scheenen, T. and Vergeldt, F.J. (2009) MRI of Intact Plants. Photosynthesis Research, 102, Article No. 213.
https://doi.org/10.1007/s11120-009-9486-3
[17]  郝燕华, 张祥雪, 丁小康, 刘姣. 植物木质部空穴化过程超声发射的分析与测量[J]. 北京林业大学学报, 2012, 34(3): 36-40.
[18]  Pereira, L., Bittencourt, P.R.L., Pacheco, V.S., Miranda, M.T., Zhang, Y., Oliveira, R.S., et al. (2020) The Pneumatron: An Automated Pneumatic Apparatus for Estimating Xylem Vulnerability to Embolism at High Temporal Resolution. Plant, Cell & Environment, 43, 131-142.
https://doi.org/10.1111/pce.13647
[19]  孟凤. 七种槭树科植物木质部栓塞及其恢复与植物抗旱性的关系[D]. 杨凌: 西北农林科技大学, 2019.
[20]  Guoquan, P., Dongmei, Y., Zhao, L., Li, J. and Tyree, M.T. (2019) An Improved Centrifuge Method for Determining Water Extraction Curves and Vulnerability Curves in the Long-Vessel Species Robinia pseudoacacia. Journal of Experimental Botany, 70, 4865-4876.
https://doi.org/10.1093/jxb/erz206
[21]  王婷, 郭雯, 潘志立, 陈芳, 杨石建. 植物木质部栓塞测定技术的研究进展[J]. 应用生态学报, 2020, 31(11): 3895-3905.
[22]  Alder, N.N., Pockman, W.T., Sperry, J.S. and Nuismer, S. (1997) Use of Centrifugal Force in the Study of Xylem Cavitation. Journal of Experimental Botany, 48, 665-674.
https://doi.org/10.1093/jxb/48.3.665
[23]  Pockman, W.T., Sperry, J.S. and O’leary, J.W. (1995) Sustained and Significant Negative Water Pressure in Xylem. Nature, 378, 715-716.
https://doi.org/10.1038/378715a0
[24]  Cochard, H., Damour, G., Bodet, C., Tharwat, I., Poirier, M. and Améglio, T. (2005) Evaluation of a New Centrifuge Technique for Rapid Generation of Xylem Vulnerability Curves. Physiologia Plantarum, 124, 410-418.
https://doi.org/10.1111/j.1399-3054.2005.00526.x
[25]  李荣, 姜在民, 张硕新, 蔡靖. 木本植物木质部栓塞脆弱性研究新进展[J]. 植物生态学报, 2015(8): 838-848.
[26]  Cai, J., Zhang, S.X., Zhang, H.X., Zhang, S.X. and Tyree, M.T. (2014) Recalcitrant Vulnerability Curves: Methods of Analysis and the Concept of Fibre Bridges for Enhanced Cavitation Resistance. Plant, Cell & Environment, 37, 35-44.
https://doi.org/10.1111/pce.12120
[27]  Wang, R., Zhang, L., Zhang, S.X., Cai, J. and Tyree, M.T. (2015) Water Relations of Robinia pseudoacacia L.: Do Vessels Cavitate and Refill Diurnally or Are R-Shaped Curves Invalid in Robinia? Plant, Cell & Environment, 37, 2667-2678.
https://doi.org/10.1111/pce.12315
[28]  Jacobsen, A.L., Pratt, R.B. and Tobin, M.F. (2011) Xylem Vessel Length and Centrifuge Measures of Xylem Cavitation Resistance. 96th ESA Annual Convention, Austin, 7-12 August 2011.
[29]  Hacke, U.G., Venturas, M.D., Mackinnon, E.D., Jacobsen, A.L., Sperry, J.S. and Pratt, R.B. (2015) The Standard Centrifuge Method Accurately Measures Vulnerability Curves of Long-Vesselled Olive Stems. New Phytologist, 205, 116-127.
https://doi.org/10.1111/nph.13017
[30]  Yin, P.X., Meng, F., Liu, Q., An, R., Cai, J. and Du, G.Y. (2018) A Comparison of Two Centrifuge Techniques for Constructing Vulnerability Curves: Insight into the “Open-Vessel” Artifact. Physiologia Plantarum, 165, 701-710.
https://doi.org/10.1111/ppl.12738
[31]  Torres-Ruiz, J.M., Sperry, J.S. and Fernández, J.E. (2012) Improving Xylem Hydraulic Conductivity Measurements by Correcting the Error Caused by Passive Water Uptake. Physiologia Plantarum, 146, 129-135.
https://doi.org/10.1111/j.1399-3054.2012.01619.x
[32]  梁昭. 基于离心机技术构建长导管物种木质部栓塞脆弱性曲线的方法研究[D]: [硕士学位论文]. 金华: 浙江师范大学, 2018.
[33]  Jacobsen, A.L. and Pratt, R.B. (2012) No Evidence for an Open Vessel Effect in Centrifuge-Based Vulnerability Curves of a Long-Vesselled Liana (Vitis vinifera). New Phytologist, 194, 982-990.
https://doi.org/10.1111/j.1469-8137.2012.04118.x
[34]  安瑞, 孟凤, 尹鹏先, 杜光源. 刺槐木质部栓塞脆弱性检测的方法比较[J]. 植物生态学报, 2018(11): 1113-1119.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133