全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模糊控制理论的数控加工参数的自适应控制研究
Adaptive Control of CNC Machining Parameters Based on Fuzzy Control Theory

DOI: 10.12677/DSC.2021.102011, PP. 100-105

Keywords: 数控加工参数,模糊控制理论,自适应控制
NC Machining Parameters
, Fuzzy Control Theory, Adaptive Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对数控加工参数对整个加工过程的重要性,阐述了一种基于模糊控制理论的数控加工参数自适应控制方法。根据建立的控制模型和模糊控制原理,编写C++源程序,并模拟实验数据进行验证程序的可行性,最后通过VC++可视化软件,将源程序嵌入到现有的数控系统中,实现了加工过程自适应控制的动态显示。结果表明了自适应控制模型的有效性,使数控机床在加工过程中保持良好的稳定性。
For the importance of NC machining parameters on the machining process, the adaptive control method of NC machining parameters is elaborated based on fuzzy control theory. According to the established control model and the fuzzy control principle, this paper compiled C++ source procedure, and simulated the experimental data to verify the feasibility of procedures, and finally, embedded the procedures into the existing numerical control system by the VC++ visual software, achieved the dynamic display of adaptive control processing. The results showed the effectiveness of the adaptive control model and made NC machine maintain the good stability in the whole machining process.

References

[1]  Benardos, P. and Vosniakos, G.C. (2014) Offline Flexible Optimisation of Feed and Speed in Computer Numerical Control Machining of Sculptured Surfaces Exploiting Dedicated Cutting Force Metamodels. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 228, 878-892.
https://doi.org/10.1177/0954405413508946
[2]  高亮, 杨杨, 李新宇. 数控加工参数优化的研究现状与进展[J]. 数字化制造, 2010(22): 48-51.
[3]  苏少普, 徐广涛, 董登科, 等. 基于Pareto遗传算法的腹板梁结构抗屈曲疲劳优化设计研究[J]. 机械强度, 2018, 40(6): 1371-1376.
[4]  周志恒, 张超勇, 谢阳, 等. 数控车床切削参数的能量效率优化[J]. 计算机集成制造系统, 2015, 21(9): 2410-2418.
[5]  Zuperl, U. and Cus, F. (2012) System for Off-Line Feedrate Optimization and Neural Force Control in End Milling. International Journal of Adaptive Control and Signal Processing, 26, 105-123.
https://doi.org/10.1002/acs.1277
[6]  李斌, 刘晓龙, 刘红奇, 等. 基于驱动电流的动态铣削力估计方法[J]. 华中科技大学学报(自然科学版), 2013, 41(6): 1-6.
[7]  Tseng, P.C. and Chou, A. (2002) The Intelligent On-Line Monitoring of End Milling. International Journal of Machine Tools & Manufacture, 42, 89-97.
https://doi.org/10.1016/S0890-6955(01)00091-8
[8]  李斌, 贾瑜, 吴波, 等. 伺服电流-铣削力关系间接建模的新方法[J]. 华中科技大学学报(自然科学版), 2000, 28(2): 51-53.
[9]  Zuperl, U. and Cus, F. (2015) Simulation and Visual Control of Chip Size for Constant Surface Roughness. International Journal of Simulation Modelling, 14, 392-403.
https://doi.org/10.2507/IJSIMM14(3)2.282
[10]  Erkorkmaz, K. and Altintas, Y. (2001) High Speed CNC System Design. Part III: High Speed Tracking and Contouring Control of Feed Drives. International Journal of Machine Tools & Manufacture, 41, 1637-1658.
https://doi.org/10.1016/S0890-6955(01)00004-9
[11]  Tarng, Y.S., Chuang, H.Y. and Hsu, W.T. (1999) Intelligent Cross-Coupled Fuzzy Feedrate Controller Design for CNC Machine Tools Based on Genetic Algorithms. International Journal of Machine Tools & Manufacture, 39, 1673-1692.
https://doi.org/10.1016/S0890-6955(99)00012-7
[12]  Liu, H.L., Wang, T.Y. and Wang, D. (2015) Constant Cutting Force Control for CNC Machining Using Dynamic Characteristic-Based Fuzzy Controller. Shock and Vibration, 2015, Article ID: 406294.
https://doi.org/10.1155/2015/406294
[13]  Zhang, W.G. (1999) The Theory and Application of Fuzzy Control. Northwestern Polytechnical University Press, Xi’an.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133