All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

板钛矿/锐钛矿混晶TiO2的制备及光催化性能
Synthesis and Photocatalytic Property of Brookite/Anatase TiO2 Mix-Phases of Titanium Di-Oxide

DOI: 10.12677/NAT.2021.112002, PP. 9-18

Keywords: TiO2,板钛矿,锐钛矿,水热法,光催化
TiO2
, Brookite, Anatase, Hydrothermal Method, Photocatalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

以四氯化钛(TiCl4)钛源,采用水热法制备了具有优异光催化性能的板钛矿/锐钛矿混晶TiO2。利用X射线衍射、拉曼光谱、透射电镜、比表面积分析、紫外漫反射光谱等测试手段对所得样品进行了表征。以亚甲基蓝溶液为目标降解物,在紫外灯照射下测试了所得样品的光催化活性。实验结果表明,所得样品为混晶纳米TiO2,由锐钛矿纳米颗粒和板钛矿纳米棒组成,其比表面积为78.72 m2·g-1,孔体积0.439 m3·g-1,平均孔径为22.32 nm,禁带宽度值为3.287 eV。混晶纳米TiO2展示了非常高的光催化活性,在紫外灯照射60 min后,对亚甲基蓝溶液的降解率高达99.0%。混晶纳米TiO2的高光催化活性不仅得益于其较大的比表面积,还源于板钛矿与锐钛矿结构间存在一定协同效应,后者为光生电子在不同相结构间的转移提供了便利,进而抑制了光生电子–空穴的复合。
In this paper, brookite/anatase TiO
2 mixtures with excellent photocatalytic property were synthesized via hydrothermal method. X-ray powder diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), Brunauer Emmett and Teller (BET) surface area analysis and ultraviolet-visible (UV-vis) spectroscopy were used to characterize the sample. The photocatalytic activity of brookite/anatase mixtures was evaluated by photodegradation of methylene blue (MB) under ultraviolet light irradiation. Experimental results showed that theobtained sample was the mixed crystal TiO2, which consisted of brookite nanorods and anatase nanoparticles. The specific surface area is 78.72 m2·g-1, the pore volume is 0.439 m3·g-1
References

[1]  Ma, Y., Wang, X.L., Jia, Y.S., et al. (2014) Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Review, 114, 9987-10043.
https://doi.org/10.1021/cr500008u
[2]  Bai, Y., Mora-Sero?, I., De Angelis, F., et al. (2014) Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Review, 114, 10095-10130.
https://doi.org/10.1021/cr400606n
[3]  Bai, J. and Zhou, B.X. (2014) Titanium Dioxide Nanomaterials for Sensor Applications. Chemical Review, 114, 10131- 10176.
https://doi.org/10.1021/cr400625j
[4]  Ramya, S., RuthNithila, S.D., George, R.P., et al. (2013) Antibacterial Studies on Eu-Ag Codoped TiO2 Surfaces. Ceramics International, 39, 1695-1705.
https://doi.org/10.1016/j.ceramint.2012.08.012
[5]  Méndez-Medrano, M.G., Kowalska, E., Ohtani, B., et al. (2020) Heterojunction of CuO Nanoclusters with TiO2 for Photo-Oxidation of Organic Compounds and for Hy-drogen Production. The Journal of Chemical Physics, 153, Article ID: 034705.
https://doi.org/10.1063/5.0015277
[6]  Kaplan, R., Erjavec, B., Dra?i?, G., et al. (2016) Simple Synthesis of Ana-tase/Rutile/Brookite TiO2 Nanocomposite with Superior Mineralization Potential for Photocatalytic Degradation of Water Pollutants. Applied Catalysis B: Environmental, 181, 465-474.
https://doi.org/10.1016/j.apcatb.2015.08.027
[7]  Ni, M., Leung, M.K.H., Leung, D.Y.C., et al. (2007) A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renewable Sustainable Energy Review, 11, 401-425.
https://doi.org/10.1016/j.rser.2005.01.009
[8]  Liu, L., Zhao, H.L., Andino, J.M., et al. (2012) Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis, 2, 1817- 1828.
https://doi.org/10.1021/cs300273q
[9]  Wang, C., Sun, Z., Zheng, Y., et al. (2019) Recent Progress in Visible Light Photocatalytic Conversion of Carbon Dioxide. Journal of Ma-terials Chemistry A, 7, 865-887.
https://doi.org/10.1039/C8TA09865D
[10]  Di Paola, A., Bellardita, M. and Palmisano, L. (2013) Brookite, the Least Known TiO2 Photocatalyst. Catalysts, 3, 36-73.
https://doi.org/10.3390/catal3010036
[11]  Monai, M., Montini, T. and Fornasiero, P. (2017) Brookite: Nothing New under the Sun? Catalysts, 7, 304-322.
https://doi.org/10.3390/catal7100304
[12]  Tran, H.T.T., Kosslick, H., Ibad, M.F., et al. (2017) Photocatalytic Per-formance of Highly Active Brookite in the Degradation of Hazardous Organic Compounds Compared to Anatase and Rutile. Applied Catalysis B: Environmental, 200, 647-658.
https://doi.org/10.1016/j.apcatb.2016.07.017
[13]  Vequizo, J.J.M., Matsunaga, H., Ishiku, T., et al. (2017) Trap-ping-Induced Enhancement of Photocatalytic Activity on Brookite TiO2 Powders: Comparison with Anatase and Rutile TiO2 Powders. ACS Catalysis, 7, 2644-2651.
https://doi.org/10.1021/acscatal.7b00131
[14]  Choi, M., Lim, J., Baek, M., et al. (2017) Investigating the Unre-vealed Photocatalytic Activity and Stability of Nanostructured Brookite TiO2 Filmas an Environmental Photocatalyst. ACS Applied Materials & Interfaces, 9, 16252-16260.
https://doi.org/10.1021/acsami.7b03481
[15]  Kolesnik, I.V., Kozlov, D.A., Poluboyarinov, A.S., et al. (2019) Non-Classical Growth of Brookite Nanorods. CrystEngComm, 21, 5673-5681.
https://doi.org/10.1039/C9CE00682F
[16]  孙奉玉, 吴鸣, 李文钊, 等. 二氧化钛的尺寸与光催化活性的关系[J]. 催化学报, 1998, 19(3): 229-233.
[17]  唐玉朝, 李薇, 胡春, 等. TiO2形态结构与光催化活性关系的研究[J]. 化学进展, 2003, 15(5): 379-384.
[18]  Allen, N.S., Mahdjoub, N., Vishnyakov, V., et al. (2018) The Effect of Crystal-line Phase (Anatase, Brookite and Rutile) and Size on the Photocatalytic Activity of Calcined Polymorphic Titanium Di-oxide (TiO2). Polymer Degradation and Stability, 150, 31-36.
https://doi.org/10.1016/j.polymdegradstab.2018.02.008
[19]  Boppella, R., Basak, P. and Manorama, S.V. (2012) Viable Method for the Synthesis of Biphasic TiO2 Nanocrystals with Tunable Phase Composition and Enabled Visi-ble-Light Photocatalytic Performance. ACS Applied Materials & Interfaces, 4, 1239-1246.
https://doi.org/10.1021/am201354r
[20]  Yan, M., Chen, F., Zhang, J., et al. (2005) Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties. The Journal of Physical Chemistry B, 109, 8673-8678.
https://doi.org/10.1021/jp046087i
[21]  Jiao, Y.C., Chen, F. and Zhao, B. (2012) Anatase Grain Loaded Brookite Nanoflower Hybrid with Superior Photocatalytic Activity for Organic Degradation. Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 402, 66-67.
https://doi.org/10.1016/j.colsurfa.2012.03.020
[22]  Shen, X.J., Tian, B.Z. and Zhang, J.L. (2013) Tailored Preparation of Titania with Controllable Phases of Anatase and Brookite by an Alkalescent Hydrothermal Route. Catalysis Today, 201, 151-158.
https://doi.org/10.1016/j.cattod.2012.04.038
[23]  Kandiel, T.A., Feldhoff, A. and Robben, L. (2010) Tailored Tita-nium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts. Chemistry of Materials, 22, 2050-2060.
https://doi.org/10.1021/cm903472p
[24]  Kandiel, T.A., Robben, L., Alkaim, A., et al. (2013) Brookite versus Ana-tase TiO2 Photocatalysts: Phase Transformations and Photocatalytic Activities. Photochemical & Photobiological Scienc-es, 12, 602-609.
https://doi.org/10.1039/C2PP25217A
[25]  Zou, Y.L., Li, Y., Lian, X.X., et al. (2020) Controllable Hydrothermal Synthesis of Single-Phase Brookite TiO2. Applied Physics A, 126, 618-627.
https://doi.org/10.1007/s00339-020-03797-8
[26]  Ohno, Y., Tomita, K., Komatsubara, Y., et al. (2011) Pseu-do-Cube Shaped Brookite (TiO2) Nanocrystals Synthesized by an Oleate-Modified Hydrothermal Growth Method. Crystal Growth & Design, 11, 4831-4836.
https://doi.org/10.1021/cg2006265
[27]  Hu, W.B., Li, L.P., Li, G.S., et al. (2009) High-Quality Brookite TiO2 Flowers: Synthesis, Characterization, and Dielectric Performance. Crystal Growth and Design, 9, 3676-3682.
https://doi.org/10.1021/cg9004032
[28]  Zhao, B., Lin, L. and He, D.N. (2013) Phase and Morphological Transi-tions of Titania/Titanate Nanostructures from an Acid to an Alkali Hydrothermal Environment. Journal of Materials Chemistry A, 1, 1659-1668.
https://doi.org/10.1039/C2TA00755J
[29]  Cerro-Prada, E., García-Salgado, S., Quijano, M.á., et al. (2019) Con-trolled Synthesis and Microstructural Properties of Sol-Gel TiO2 Nanoparticles for Photocatalytic Cement Composites. Nanomaterials, 9, 26.
https://doi.org/10.3390/nano9010026
[30]  Tompsett, G.A., Bowmaker, G.A., Cooneyet, R.P., et al. (1995) The Raman Spectrum of Brookite, TiO2 (Pbca, Z = 8). Journal of Raman Spectroscopy, 26, 57-62.
https://doi.org/10.1002/jrs.1250260110
[31]  Iliev, M.N., Hadjiev, V.G. and Litvinchuk, A.P. (2013) Raman and Infrared Spectra of Brookite (TiO2): Experiment and Theory. Vibrational Spectroscopy, 64, 148-152.
https://doi.org/10.1016/j.vibspec.2012.08.003
[32]  Alemany, L.J., Ba?ares, M.A., Pardo, E., et al. (2000) Mor-phological and Structural Characterization of a Titanium Dioxide System. Materials Characterization, 44, 271-275.
https://doi.org/10.1016/S1044-5803(99)00066-2
[33]  Mangum, J.S., Chan, L.H., Schmidt, U., et al. (2018) Cor-relative Raman Spectroscopy and Focused Ion Beam for Targeted Phase Boundary Analysis of Titania Polymorphs. Ul-tramicroscopy, 188, 48-51.
https://doi.org/10.1016/j.ultramic.2018.02.007
[34]  Zhang, H. and Banfield, J. (2000) Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates:? Insights from TiO2. Journal of Physical Chemistry B, 104, 3481-3487.
https://doi.org/10.1021/jp000499j
[35]  Zhu, K., Zhang, M., Hong, J., et al. (2005) Size Effect on Phase Transition Sequence of TiO2 Nanocrystal. Materials Science and Engineering A, 403, 87-93.
https://doi.org/10.1016/j.msea.2005.04.029
[36]  谢耀, 邹云玲, 张高尚, 等. 单一相板钛矿TiO2的制备及光催化性能研究[J]. 纳米技术, 2019, 9(1): 10-16.
[37]  Serpone, N., Lawless, D. and Khairutdinov, R. (1995) Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization or Direct Transitions in This Indi-rect Semiconductor. Journal of Physical Chemistry, 99, 16646-16654.
https://doi.org/10.1021/j100045a026
[38]  Mo, S.D. and Ching, W.Y. (1995) Electronic and Optical Properties of Three Phases of Titanium Dioxide: Rutile, Anatase and Brookite. Physical Review B, 51, 13023-13032.
https://doi.org/10.1103/PhysRevB.51.13023
[39]  Landmann, M., Rauls, E. and Schmidt, W.G. (2012) The Elec-tronic Structure and Optical Response of Rutile, Anatase and Brookite TiO2. Journal of Physics: Condensed Matter, 24, 195503-195508.
https://doi.org/10.1088/0953-8984/24/19/195503
[40]  Bellardita, M., Di Paola, A., Megna, B., et al. (2017) Abso-lute Crystallinity and Photocatalytic Activity of Brookite TiO2 Samples. Applied Catalysis B: Environmental, 201, 150-158.
https://doi.org/10.1016/j.apcatb.2016.08.012

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413