|
Pure Mathematics 2021
?n中Fock型空间上线性算子的有界性和紧性
|
Abstract:
[1] | Zhu, K.H. (2012) Analysis on Fock Spaces. Springer Verlag, New York. https://doi.org/10.1007/978-1-4419-8801-0 |
[2] | Wang, X.F., Cao, G.F. and Zhu, K.H. (2013) Boundedness and Com-pactness of Operators on the Fock Space. Integral Equations and Operator Theory, 77, 355-370. https://doi.org/10.1007/s00020-013-2066-0 |
[3] | Axler, S. and Zheng, D.C. (1998) Compact Operators via Berezin Tranforms. Indiana Univ. Math. J., 47, 387-400.
https://doi.org/10.1512/iumj.1998.47.1407 |
[4] | Coburn, L.A., Isralowitz, J. and Li, B. (2011) Toeplitz Operators with BMO Symbols on the Segal-Bargmann Space. Transactions of the American Mathematical Society, 363, 3015-3030.
https://doi.org/10.1090/S0002-9947-2011-05278-5 |
[5] | Dieudonne, A. and Tchoundja, E. (2010) Toeplitz Operators with L1 Symbols on Bergman Spaces in the Unit Ball of . Advances in Pure and Applied Mathematics, 2, 65-88. https://doi.org/10.1515/apam.2010.027 |
[6] | Miao, J. and Zheng, D.C. (2004) Compact Operators on Bergman Spaces. Integral Equations and Operator Theory, 48, 61-79. https://doi.org/10.1007/s00020-002-1176-x |
[7] | Zhu, K.H. (1990) Operator Theory in Function Spaces. |
[8] | Zhu, K.H. (2005) Spaces of Holomorphic Functions in the Unit Ball. Springer Verlag, New York. |
[9] | Zorboska, N. (2003) Toeplitz Operators with BMO Symbols and the Berezin Transform. Interna-tional Journal of Mathematics and Mathematical Sciences, 46, 2926-2945. https://doi.org/10.1155/S0161171203212035 |