全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

n中Fock型空间上线性算子的有界性和紧性
Boundedness and Compactness of Linear Operators on Fock Type Spaces in ?n

DOI: 10.12677/PM.2021.113053, PP. 407-418

Keywords: 稠密算子,有界算子,紧算子
Dense Operator
, Bounded Operator, Compact Operator

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要给出了n维复空间?n中Fock型空间上线性算子为有界算子的充分条件,以及利用Berezin变换给出了线性算子为紧算子的充分条件。
In this paper, the sufficient conditions for linear operators to be bounded on Fock type spaces in n-dimensional complex spaces ? are given, and the sufficient conditions for linear operators to be compact operators are given by Berezin transformation.

References

[1]  Zhu, K.H. (2012) Analysis on Fock Spaces. Springer Verlag, New York.
https://doi.org/10.1007/978-1-4419-8801-0
[2]  Wang, X.F., Cao, G.F. and Zhu, K.H. (2013) Boundedness and Com-pactness of Operators on the Fock Space. Integral Equations and Operator Theory, 77, 355-370.
https://doi.org/10.1007/s00020-013-2066-0
[3]  Axler, S. and Zheng, D.C. (1998) Compact Operators via Berezin Tranforms. Indiana Univ. Math. J., 47, 387-400.
https://doi.org/10.1512/iumj.1998.47.1407
[4]  Coburn, L.A., Isralowitz, J. and Li, B. (2011) Toeplitz Operators with BMO Symbols on the Segal-Bargmann Space. Transactions of the American Mathematical Society, 363, 3015-3030.
https://doi.org/10.1090/S0002-9947-2011-05278-5
[5]  Dieudonne, A. and Tchoundja, E. (2010) Toeplitz Operators with L1 Symbols on Bergman Spaces in the Unit Ball of . Advances in Pure and Applied Mathematics, 2, 65-88.
https://doi.org/10.1515/apam.2010.027
[6]  Miao, J. and Zheng, D.C. (2004) Compact Operators on Bergman Spaces. Integral Equations and Operator Theory, 48, 61-79.
https://doi.org/10.1007/s00020-002-1176-x
[7]  Zhu, K.H. (1990) Operator Theory in Function Spaces.
[8]  Zhu, K.H. (2005) Spaces of Holomorphic Functions in the Unit Ball. Springer Verlag, New York.
[9]  Zorboska, N. (2003) Toeplitz Operators with BMO Symbols and the Berezin Transform. Interna-tional Journal of Mathematics and Mathematical Sciences, 46, 2926-2945.
https://doi.org/10.1155/S0161171203212035

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133