全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

外掠平板层流流动边界层微分方程积分解的实现
Implementation of Integration Solution to Boundary Layer Equation of Laminar Flow over Plane

DOI: 10.12677/CES.2021.92045, PP. 285-292

Keywords: 边界层,微分方程,流体力学,传热学
Boundary Layer
, Differential Equation, Fluid Mechanics, Heat Transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

边界层理论及其在典型流动问题中的应用是流体力学和传热学的重要内容,通过对外掠平板层流流动和换热等问题的分析,可以揭示流体流动和传热的基本规律,是认识更为复杂流体流动和传热现象的基础。在分析和介绍边界层微分方程建立方法、相似变量表达式以及边界层方程典型解法的基础上,重点探讨了外掠平板边界层相似变换微分方程的积分解解法,并给出了相应的MATLAB计算程序。计算结果表明,边界层相似变换微分方程的积分解法简单、易行,该方法对于教师讲解和学生理解边界层流动和传热特性有积极作用。
Boundary layer theory and its application in typical flow problems are important contents of fluid mechanics and heat transfer courses. Through the analysis of laminar flow and heat transfer over a flat plate, the basic laws of fluid flow and heat transfer can be revealed, which is the basis of understanding more complex fluid flow and heat transfer phenomena. Based on the analysis and introduction of the establishment method of the boundary layer differential equation, the expression of similar variables and the typical solution of the boundary layer equation, the integral solution of the similar transformation differential equation of the boundary layer formed by fluid flowing over the flat plate was introduced, and the corresponding MATLAB program was given. The results showed that the integral method for solving boundary layer similarity transformation differential equation was simple and easy to use. This method has a positive effect on teachers’ explanation and students’ understanding of the characteristics of boundary layer flow and heat transfer.

References

[1]  Schlichting, H. and Gersten, K. (2017) Boundary-Layer Theory. 9th Edition, Springer-Verlag, Berlin, Heidelberg.
[2]  孔珑. 工程流体力学[M]. 第4版. 北京: 中国电力出版社, 2014.
[3]  陶文铨. 传热学[M]. 第5版. 北京: 高等教育出版社, 2019.
[4]  Liao, S.-J. (1999) An Explicit, Totally Analytic Approximate Solution for Blasius’ Viscous Flow Problems. International Journal of Non-Linear Mechanics, 34, 759-778.
https://doi.org/10.1016/S0020-7462(98)00056-0
[5]  许维德, 孔祥谦. 层流边界层的有限差分计算[J]. 力学与实践, 1981, 3(4): 43-48.
[6]  施天莫. 计算传热学[M]. 陈越南, 范正翘, 陈善年, 等, 译. 北京: 科学出版社, 1987.
[7]  王诚, 周振, 石少卿, 陈暲. 试射法求解二维层流边界层中的Falkner-Skan方程[J]. 重庆理工大学学报, 2016, 30(5): 53-56.
[8]  郭宽良, 孔祥谦, 阵善年. 计算传热学[M]. 合肥: 中国科学技术大学出版社, 1988.
[9]  张永恒, 王良璧, 梁士轩. 基于优化方法的边界层微分方程求解[J]. 科技导报, 2008, 26(2): 46-50.
[10]  Varian, V.P. (2013) A Solution of the Blasius Problem. https://library.keldysh.ru/preprint.asp?id=2013-40&lg=e
[11]  王培光, 王振东. 用摄动法建立边界层方程[J]. 力学与实践, 1995, 17(5): 59.
[12]  樊福梅, 梁平, 龙新峰. Prandtl边界层方程推导中的尺度化分析[J]. 华南理工大学学报(自然科学版), 2003, 31(10): 61-64.
[13]  侯义元. 边界层方程相似性解法简述[J]. 北京水利电力经济管理学院学报, 1986(1): 93-102.
[14]  岳曾元. Blasius问题相似性解的一个简单证明[J]. 力学与实践, 1984, 6(1): 52-53.
[15]  杨祖樱. 用群论方法求粘性流动的相似性解[J]. 福州大学学报(自然科学版), 1986(4): 43-52.
[16]  王飞. 基于同伦分析方法的几类边界层问题研究[D]: [硕士学位论文]. 福州: 福州大学, 2016.
[17]  周冉. 重整化群方法在边界层问题中的应用[D]: [博士学位论文]. 长春: 吉林大学, 2019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133