|
Material Sciences 2021
基于位错密度的Ti-6Al-4V合金表面机械碾磨晶粒细化模型及工艺优化
|
Abstract:
基于Johnson-Cook本构模型,采用Abaqus有限元分析软件,建立了Ti-6Al-4V钛合金表面机械碾磨工艺的二维有限元仿真模型,并将其与位错密度演化模型进行耦合,实现了对表面机械碾磨过程中受力情况与微观晶粒细化动态演变的仿真模拟。基于仿真结果,对钛合金表面机械碾磨过程中的残余应力场、应变场、位错密度和晶粒尺寸的变化规律进行了研究,得到了碾磨速度和单道次碾磨深度两种工艺参数对钛合金表面机械碾磨过程中晶粒细化程度的影响规律,为钛合金表面机械碾磨处理工艺参数的优化提供了有利参考。
Abaqus commercial finite element analysis software is used to establish a two-dimensional finite element simulation model of Ti-6Al-4V titanium alloy surface mechanical grinding process based on the Johnson-Cook constitutive model. The model is coupled with dislocation density evolution model to simulate the dynamic evolution of the macroscopic force and the microscopic grain refinement during the surface mechanical grinding treatment. Based on the simulation results, the changes in the residual stress field, strain field, dislocation density and grain size during the mechanical grinding of the titanium alloy surface were studied. The influence of two process parameters, grinding speed and single-pass grinding depth, on the degree of grain refinement during mechanical grinding of the titanium alloy surface is obtained. It provides a favorable reference for the optimization of the process parameters of the mechanical grinding treatment of the titanium alloy surface.
[1] | 刘研蕊. 钛及钛合金表面纳米化及其表面组织性能的研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2006. |
[2] | Che, Z., Yang, J., Gong, S., Cao, Z., Zou, S. and Xu, H. (2014) Self-Nanocrystallization of Ti-6Al-4V Alloy Surface Induced by Laser Shock Processing. Rare Metal Materials and Engineering, 43, 1056-1060.
https://doi.org/10.1016/S1875-5372(14)60100-4 |
[3] | Li, W.L., Tao, N.R. and Lu, K. (2008) Fabrication of a Gradient Nano-Micro-Structured Surface Layer on Bulk Copper by Means of a Surface Mechanical Grinding Treatment. Scripta Materialia, 59, 546-549.
https://doi.org/10.1016/j.scriptamat.2008.05.003 |
[4] | 康燕平, 李元东, 王晓东, 高坤. 镁、铝合金表面自纳米化研究现状[J]. 材料导报, 2011, 25(23): 20-24. |
[5] | Lu, K. and Lu, J. (2004) Nanostructured Surface Layer on Me-tallic Materials Induced by Surface Mechanical Attrition Treatment. Materials Science and Engineering: A, 375-377, 38-45. https://doi.org/10.1016/j.msea.2003.10.261 |
[6] | Bagherifard, S., Fernández Pariente, I., Ghelichi, R. and Guagliano, M. (2010) Fatigue Properties of Nanocrystallized Surfaces Obtained by High Energy Shot Peening. Procedia Engineering, 2, 1683-1690.
https://doi.org/10.1016/j.proeng.2010.03.181 |
[7] | Zhao, K., Liu, Y., Yao, T., Liu, B. and He, Y. (2016) Surface Nanocrystallization of Ti-45Al-7Nb-0.3W Alloy Induced by Surface Mechanical Grinding Treatment. Materials Letters, 166, 59-62.
https://doi.org/10.1016/j.matlet.2015.12.025 |
[8] | 赵云龙, 王涛, 杨志卿. 表面机械多重碾磨对2024铝合金力学性能的影响[J]. 特种铸造及有色合金, 2018, 38(12): 1370-1374. |
[9] | 张忠杰. 深冷处理对Ti-6A1-4V钛合金摩擦磨损行为及机理的影响[D]: [硕士学位论文]. 太原: 太原理工大学, 2019. |
[10] | 左健民, 胡艳艳, 汪木兰, 费树岷, 顾雪艳. 基于J-C模型的Ti6Al4V切屑成形有限元模拟与分析[J]. 机床与液压, 2009, 37(11): 7-10, 40. |
[11] | Lee, W.S. and Lin, C.F. (1998) High-Temperature Deformation Behaviour of Ti6A14V Alloy Evaluated by High Strain-Rate Compression Tests. Journal of Materials Processing Technology, 75, 127-136.
https://doi.org/10.1016/S0924-0136(97)00302-6 |
[12] | Chen, G., Ren, C., Yang, X., Jin, X. and Guo, T. (2011) Finite Element Simulation of High-Speed Machining of Titanium Alloy (Ti-6Al-4V) Based on Ductile Failure Model. International Journal of Advanced Manufacturing Technology, 56, 1027-1038. https://doi.org/10.1007/s00170-011-3233-6 |
[13] | Estrin, Y., Tóth, L.S., Molinari, A. and Bréchet, Y. (1998) A Dislocation-Based Model for All Hardening Stages in Large Strain Deformation. Acta Materialia, 46, 5509-5522. https://doi.org/10.1016/S1359-6454(98)00196-7 |
[14] | Ding, H., Shen, N. and Shin, Y.C. (2011) Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting. Computational Materials Science, 50, 3016-3025. https://doi.org/10.1016/j.commatsci.2011.05.020 |
[15] | Ding, H. and Shin, Y.C. (2014) Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium. Journal of Manufacturing Science and Engineering, 136, Article No. 041003. https://doi.org/10.1115/1.4027207 |
[16] | [德]C?莱茵斯, M?皮特尔斯, 编. 钛与钛合金[M]. 陈振华, 等, 译. 北京: 化学工业出版社, 2005. |
[17] | 丁利强. 铝合金切削表面位错密度和晶粒细化的研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2013. |