|
Material Sciences 2021
高品质聚酯生产用纳米GeO2催化材料的制备及挑战
|
Abstract:
纳米GeO2是用于光学性能优异、耐老化性能好的高品质聚酯生产的主要催化材料,目前该催化材料的制备研究在国内鲜有报道,国内聚酯企业大都通过从国外进口纳米GeO2材料以满足生产需求,这较大地限制了国内高端聚酯产业的发展。本文讨论了聚酯合成的催化机理及发展现状,介绍了纳米GeO2用于聚酯催化的优势,分析了已有纳米GeO2材料的制备方法、研究现状、难点及挑战,提出了低成本制备纳米GeO2材料的可行性方案及最新进展。本文为低成本制备纳米GeO2催化材料提供了新的思路,对于促进我国高品质聚酯工业生产的发展具有积极意义。
Nano-GeO2 particles are a major catalyst material for synthesizing high-quality polyesters with excellent optical and aging-resistant performance. Nowadays, there are few reports for its prepa-ration research in China. Domestic enterprises have to import nano-GeO2 powders to meet their production demands. Therefore, the development of inland high-quality polyesters is restricted. In this work, we discussed the catalytic mechanism of polyester synthesis and its current situation, and introduced the advantages of nano-GeO2 served as catalyst. Then, we came up with the appli-cable preparation method of low-cost nano-GeO2 and the latest research advance based on analyzing the previous synthesis methods, research status and fabrication difficulties of nano-GeO2. This paper provides a new idea for the production of low-cost nano-GeO2 catalysts, and may leave a positive impact on the development of domestic high-quality polyesters.
[1] | 国内聚酯触底反弹节节攀升产能扩张[J]. 乙醛醋酸化工, 2019(8): 42. |
[2] | 孙小甫. PET共聚酯的制备及液相增黏研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2019. |
[3] | 萧斌, 王丽苹, 杨先贵, 王公应. 聚酯催化剂的研究进展[J]. 化学试剂, 2010, 32(3): 223-226. |
[4] | Aharoni, S.M. (1995) Synthesis of Poly(epsilon-caprolactam) and Poly(ethyleneterephthalate) Star Polymers. International Journal of Polymeric Materials, 29, 119-132. https://doi.org/10.1080/00914039508009682 |
[5] | 王晓平, 吴飞. PET生产工艺参数对产品质量的影响[J]. 合成树脂及塑料, 2006(3): 36-39+59. |
[6] | Aharoni, S.M. (1998) The Cause of the Grey Discoloration of PET Prepared by the Use of Antimony-Catalysts. Polymer Engineering & Science, 38, 1039-1047. https://doi.org/10.1002/pen.10272 |
[7] | 曹善文, 李朝晖, 付乐军. PET缩聚催化剂的发展及展望[J]. 聚酯工业, 2004, 17(5): 5-9. |
[8] | Mannk, K., Davison, K. and Colombo, M. (2006) A Antimony Trioxide-Induced Apoptosis Is Dependent on SEKI/JNK Signaling. Toxicology Letters, 160, 158-170. https://doi.org/10.1016/j.toxlet.2005.06.017 |
[9] | He, M. and Yang, J. (1999) Effects of Different Forms of Anti-mony on Rice during the Period of Germination and Growth and Antimony Concentration in Rice Tissue. Science of the Total Environment, 243-244, 149-155.
https://doi.org/10.1016/S0048-9697(99)00370-8 |
[10] | Poon, R., Chu, I., Lecavalier, P., Valli, V.E., Foster, W., Gupta, S. and Thomas, B. (1998) Effects of Antimony on Rats Following 90-Day Exposure via Drinking Water. Food and Chemical Toxicology, 36, 21-35.
https://doi.org/10.1016/S0278-6915(97)80120-2 |
[11] | Mason, J.D. (1992) Catalyst System and Process for Pre-paring Polyethylene Terephthalate. US Patent No. 07/705871. |
[12] | 顾宇辉, 古宏晨, 徐宏, 等. PET聚酯缩聚用改性二氧化钛催化剂的制备研究[J]. 合成纤维, 2004, 35(4): 25-27. |
[13] | Tsai, C.-J., Chang, W.-C., Chen, C.-H., Lu, H.-Y. and Chen, M. (2008) Synthesis and Characterization of Polyesters Derived from Succinic Acid, Ethylene Glycol and 1,3-Propanediol. European Polymer Journal, 44, 2339-2347.
https://www.elsevier.com/locate/europolj
https://doi.org/10.1016/j.eurpolymj.2008.05.002 |
[14] | Karayannidis, G.P., Roupakias, C.P., Bikiaris, D.N. and Achilias, D.S. (2003) Study of Various Catalysts in the Synthesis of Poly(propylene terephthalate) and Mathematical Modeling of the Esterification Reaction. Polymer, 44, 931-942. https://www.journals.elsevier.com/polymer
https://doi.org/10.1016/S0032-3861(02)00875-3 |
[15] | Tung ying, K., Jihchen, H. and Chien-shium, L. (1999) Poly(1,3-propyleneterephthalate). US Patent No. 5/872204. |
[16] | 黄兴山. PET缩聚新型催化剂-锗催化剂[J]. 技术创新, 2003, 3(3): 22-23. |
[17] | 刘斌. 新型PET缩聚用钛系催化剂的合成及应用性能的研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2018. |
[18] | 唐永良. 聚对苯二甲酸乙二醇合成催化剂研究进展[J]. 合成纤维, 2006, 35(7): 19-22. |
[19] | 陈君, 黄宝铨, 陈婷, 陈庆华, 肖荔人, 钱庆荣. 聚对苯二甲酸丙二醇酯的研究进展[J]. 精细石油化工进展, 2013, 14(1): 49-54. |
[20] | Zimmermann, H. (1962) Chemical Studies on Fibre Forming Polyesters Thermal Sta-bilization of Polyethylene Terephthalate. Faserforschung and Textilechnik, 13, 481-490. |
[21] | 廉谷博善. 纤维化合物中的触媒作用[J]. 高分子论文集, 1978(35): 787-789. |
[22] | Hidalgo, P., Méndez, B. and Piqueras, J. (2008) Sn Doped GeO2 Nanowires with Wave Guiding Behavior. Nanotechnology, 19, Article ID: 455705. https://iopscience.iop.org/article/10.1088/0957-4484/19/45/455705
https://doi.org/10.1088/0957-4484/19/45/455705 |
[23] | Qiu, X., Yu, L, Zhang, L., Liao, L., Qin, J. and Yang, J. (2005) Expression of MyoD Gene in Li Myoblast Cells Induced by GeO2. Chinese Journal of Clinical Anatomy, 23, 14-16. |
[24] | Lorenz, H., Zhao, Q., Turner, S., Lebedev, O.I., Van Tendeloo, G., Kl?tzer, B., Penner, S., et al. (2010) Preparation and Structural Characterization of SnO2 and GeO2 Methanol Steam Reforming Thin Film Model Catalysts by (HR) TEM. Materials Chemistry and Physics, 122, 623-629.
https://www.journals.elsevier.com/materials-chemistry-and-physics
https://doi.org/10.1016/j.matchemphys.2010.03.057 |
[25] | Lu, Q., Gao, F., Li, Y., Zhou, Y. and Zhao, D. (2002) Synthesis of Germanium Oxide Mesostructures with a New Intermediate State. Microporous and Mesoporous Materials, 56, 219-225.
https://www.journals.elsevier.com/microporous-and-mesoporous-materials
https://doi.org/10.1016/S1387-1811(02)00488-2 |
[26] | Chang, T.C., Yan, S.T., Hsu, C.H., Tang, M.T., Lee, J.F., Tai, Y.H., Sze, S.M., et al. (2004) A Distributed Charge Storage with GeO2 Nanodots. Applied Physics Letters, 84, 2581-2583. https://doi.org/10.1063/1.1697627 |
[27] | Atuchin, V.V., Gavrilova, T.A., Gromilov, S.A., Kostrovsky, V.G., Pokrovsky, L.D., Troitskaia, I.B., Ramana, C.V., et al. (2009) Low-Temperature Chemical Synthesis and Micro-structure Analysis of GeO2 Crystals with α-Quartz Structure. Crystal Growth & Design, 9, 1829-1832. https://doi.org/10.1021/cg8010037 |
[28] | 郭展郡. 化学气相沉积技术与材料制备[J]. 低碳世界, 2017(27): 288-289. |
[29] | Jiang, Z.X., Zhang, Y., Huang, H.H., Liu, X.S., Yuan, C.L., Gu, G. and Ye, S.L. (2014) Morpholo-gy-Engineered Strain Transformation in Ge/GeO2 Core/Shell Nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 60, 100-103. https://www.journals.elsevier.com/physica-e-low-dimensional-systems-and-nanostructures
https://doi.org/10.1016/j.physe.2014.02.010 |
[30] | Bayanov, V.A., Rakhimova, O.V., Rakhimov, V.I. and Syomov, M.P. (2016) Spectrophotometric Differential Kinetic Method for the Determination of Germanium and Silicon in the Presence of Each Other in the GeO2-SiO2 Systems. Glass Physics and Chemistry, 42, 214-217. https://doi.org/10.1134/S1087659616020036 |
[31] | Shi, R., Zhang, R., Chen, X., Yang, F., Zhao, Q., Yu, J., Yang, H., et al. (2011) Controllable Growth of GeO2 Nanowires with the Cubic and Hexagonal Phases and Their Photolumi-nescence. Journal of Crystal Growth, 336, 6-13.
https://www.sciencedirect.com/science/article/pii/S0022024811007688?via%3Dihub
https://doi.org/10.1016/j.jcrysgro.2011.09.025 |
[32] | Armelao, L., Heigl, F., Kim, P.-S.G., Rosenberg, R.A., Regier, T.Z. and Sham, T.-K. (2012) Visible Emission from GeO2 Nanowires: Site-Specific Insights via X-Ray Excited Optical Luminescence. The Journal of Physical Chemistry C, 116, 14163-14169. https://doi.org/10.1021/jp3040743 |
[33] | 王高潮. 材料科学与工程导论[M]. 北京: 机械工业出版社, 2006. |
[34] | Bose, N., Taki, G.S., Basu, M. and Mukherjee, S. (2014) GeO2 Nanorods: Synthesis, Structural and Photoluminescence Properties. Materials Research Express, 1, Article ID: 045013.
https://iopscience.iop.org/article/10.1088/2053-1591/1/4/045013
https://doi.org/10.1088/2053-1591/1/4/045013 |
[35] | Song, H., Zhao, B., Yan, S., Li, K. and Shi, Y. (2017) Porous Nano-Structured GeO2 for High Performance Lithium Storage. Journal of Nanoscience & Nanotechnology, 17, 9036-9041.
https://www.ingentaconnect.com/content/asp/jnn/2017/00000017/00000012/art00047
https://doi.org/10.1166/jnn.2017.13899 |
[36] | 黄剑锋. 高等学校教材溶胶-凝胶原理与技术[M]. 北京: 化学工业出版社, 2005. |
[37] | Kojima, K., Yamauchi, K., Sanada, T. and Wada, N. (2016) Second-Order Nonlinear Green Light Emission in Sol-Gel Derived Opaque ZnO-GeO2 Oxides by Near-Infrared Laser Irradiation. Journal of the Ceramic Society of Japan, 124, 177-179. https://doi.org/10.2109/jcersj2.15273 |
[38] | Jing, C., Hou, J. and Xu, X. (2008) Fabrication and Optical Characteristics of Thick GeO2 Sol-Gel Coatings. Optical Materials, 30, 857-864. https://www.sciencedirect.com/science/article/abs/pii/S0925346707001097
https://doi.org/10.1016/j.optmat.2007.03.006 |
[39] | Javadi, M., Yang, Z. and Veinot, J.G.C. (2014) Surfactant-Free Synthesis of GeO2 Nanocrystals with Controlled Morphologies. Chemical Communications, 50, 6101-6104. https://doi.org/10.1039/C4CC01490A |
[40] | 杨文胜, 高明远, 白玉白, 等. 纳米材料与生物技术[M]. 北京: 化学工业出版社, 2005: 61-62. |
[41] | Chiu, Y.-W. and Huang, M.H. (2009) Formation of Hexabranched GeO2 Nanopar-ticles via a Reverse Micelle System. The Journal of Physical Chemistry C, 113, 6056-6060. https://doi.org/10.1021/jp9002615 |
[42] | Zhang, W., Qiao, X. and Chen, J. (2008) Formation of Silver Nanoparticles in SDS Inverse Microemulsions. Materials Chemistry and Physics, 109, 411-416. https://doi.org/10.1016/j.matchemphys.2007.12.009 |
[43] | Sugimoto, T. and Kimijima, K. (2003) New Approach to the Formation Mechanism of AgCl Nanoparticles in a Reverse Micelle System. The Journal of Physical Chemistry B, 107, 10753-10759. https://doi.org/10.1021/jp035329w |
[44] | Yuasa, M., Masaki, T., Kida, T., Shimanoe, K. and Yamazoe, N. (2009) Nano-Sized PdO Loaded SnO2 Nanoparticles by Reverse Micelle Method for Highly Sensitive CO Gas Sensor. Sensors and Actuators B: Chemical, 136, 99-104.
https://doi.org/10.1016/j.snb.2008.11.022 |