全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

重载作用下典型沥青路面结构疲劳寿命分析
Fatigue Life Analysis of Typical Asphalt Pavement Structure under Heavy Load

DOI: 10.12677/MS.2021.113026, PP. 201-208

Keywords: 典型路面结构,半刚性基层,疲劳寿命,数值模拟,合理厚度
Typical Pavement Structure
, Semi-rigid Base, Fatigue Life, Numerical Simulation, Reasonable Thickness

Full-Text   Cite this paper   Add to My Lib

Abstract:

为分析比较半刚性基层、组合式基层和倒装式基层3中典型路面结构在重载作用下的疲劳寿命,本文基于ABAQUS有限元程序,建立了三种典型路面结构模型,计算了典型路面结构在重载作用下的力学响应,评价了三种路面结构的疲劳性能和疲劳寿命,同时根据各路面结构基层层厚对路面结构疲劳寿命的影响,得出了级配碎石和大粒径透水材料(LSPM)的合理厚度。结果表明级配碎石基层和大孔径透水材料(LSPM)基层比传统半刚性基层拥有更好的抗疲劳开裂性能。级配碎石基层的合理厚度为15~18 cm,LSPM的厚度不应超过15 cm。
In order to analyze and compare the fatigue life of three typical pavement structures under heavy load, which are semi-rigid base, combined base and inverted base, three typical pavement structure models are established based on ABAQUS finite element program, and the mechanical response of typical pavement structure under heavy load is calculated. The fatigue performance and fatigue life of three kinds of pavement structures are evaluated, and the reasonable thickness of graded crushed stone and large particle size permeable material (LSPM) is obtained according to the influence of the base layer thickness of each pavement structure on the fatigue life of pavement structure. The results show that graded crushed stone base and LSPM base have better anti fatigue cracking performance than traditional semi-rigid base. The reasonable thickness of graded crushed stone base is 15~18 cm, and the thickness of LSPM should not exceed 15 cm.?

References

[1]  Kim, Y.R., Baek, C., Underwood, B.S., Subramanian, V., Guddati, M.N. and Lee, K. (2008) Application of Viscoelastic Continuum Damage Model Based Finite Element Analysis to Predict the Fatigue Performance of Asphalt Pavements. KSCE Journal of Civil Engineering, 12, 109-120.
https://doi.org/10.1007/s12205-008-0109-x
[2]  Baek, J. and Al-Qadi, I.L. (2008) Finite Element Modeling of Reflective Cracking under Moving Vehicular Loading: Investigation of the Mechanism of Reflective Cracking in Hot-Mix Asphalt Overlays Reinforced with Interlayer Systems. Airfield and Highway Pavements 2008, Washington, 15-18 October 2008.
https://doi.org/10.1061/41005(329)7
[3]  Huang, X.M. and Wang, S.J. (2013) Analysis Theory and Practice of Modern Asphalt Pavement Structure. Science Press, Beijing
[4]  陈忠达, 武建民, 张小荣, 徐强. 干线公路沥青路面典型结构的研究[J]. 公路交通科技, 2001, 18(2): 9-12.
[5]  蒋育红, 黄晓明, 廖公云. 级配碎石夹层路面结构的断裂力学分析[J]. 合肥工业大学学报, 2009, 32(4): 511-514.
[6]  王艳, 倪富健, 李再新. 水泥稳定碎石基层温缩性能试验及预估控制[J]. 东南大学学报(自然科学版), 2008, 38(2): 260-264.
[7]  王龙, 冯德成. 提高级配碎石基层使用性能的方法[J]. 中国公路学报, 2006, 19(4): 40-45.
[8]  Loria, L., Hajj, E.Y. and Sebaaly, P.E. (2011) Assessment of Reflective Cracking Models for Asphalt Pavements. Road Pavement and Material Characterization, Modeling, and Maintenance. GeoHunan International Conference 2011, Hunan, 9-11 June 2011, 72-79.
https://doi.org/10.1061/47624(403)10
[9]  Moes, N., Dolbow, J. and Belytschko, T. (1996) A Finite Element Method for Crack Growth without Remeshing. International Journal for Numerical Methods in Engineering, 46, 131-150.
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[10]  张永德. 广西地区全厚式沥青路面材料与力学性能研究[D]: [硕士学位论文]. 重庆: 重庆交通大学, 2008.
[11]  姚祖康. 沥青路面结构设计[M]. 北京: 人民交通出版社, 2011.
[12]  Li, P., Zheng, M.L., Wang, F., et al. (2017) Laboratory Per-formance Evaluation of High Modulus Asphalt Concrete Modified with Different Additives. Advances in Materials Science and Engineering, 2017, 1-14.
https://doi.org/10.1155/2017/7236153

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133