全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SPEI-3的云南省干湿变化时空特征分析
Spatial-Temporal Characteristics Analysis of Dry and Wet Changes in Yunnan Province, China Based on SPEI-3 Index

DOI: 10.12677/CCRL.2021.102015, PP. 119-129

Keywords: SPEI-3,干湿变化,云南省
SPEI-3 Index
, Dry and Wet Changes, Yunnan Province of China

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探明滇近62 a的干湿变化特征,本文利用Penman-Monteith法计算了1958~2019年滇的潜在蒸散发量(PET),并计算了以3个月为步长的标准化降水蒸散指数(SPEI)。利用Manner-Kendall突变检验、Morlet连续复小波变换(CCWT)分析了1958~2019年滇均值SPEI-3的变化趋势、突变点及干湿变化周期,利用经验正交函数(EOF)基于23个站点的SPEI-3指数对滇干湿变化的时空特征进行提取。研究结果显示,①滇西北、东北降水增多,其他地区降水均呈不同程度减少。滇南部降水逐年减少、蒸发强烈、滇南部变干趋势极显著。滇南部是干旱发生的重灾区。② 滇均值SPEI-3呈显著下降趋势,全省变干趋势显著,变点发生在2007年。滇干湿变化周期以26、3年为尺度的变化周期最为显著,以26年尺度周期震荡最强,为滇干湿变化的第一主周期。在26、3年特征时间尺度上,滇干湿变化的平均周期分别为49、9年左右。③ 滇干湿变化的空间场主要有6种表现类型,在1958~2019年间有19 a全滇变湿、17 a全滇变干、滇东南变湿西北变干有6 a、有13 a滇东南变干西北变湿。在1958~2019年滇干湿变化以变干为主,其中西南、东南部的变干趋势极显著。滇SPEI-3指数的空间变化与滇农作物旱灾受灾面积变化趋势较一致,说明SPEI-3计算结果指示性强,可用于预测滇干湿变化。
In order to explore the characteristics of dry and wet changes in Yunnan Province in recent 62 years. In this paper, we calculated the potential evapotranspiration (PET) of Yunnan Province from 1958 to 2019 by Penman-Monteith method, and on this basis, calculated the SPEI drought index at a pace of 3 months. The author has used Manner-Kendall mutation test and Morlet complex continuous wavelet transform (CCWT) to analyze the variation trend, mutation point and dry-wet change period of mean SPEI-3 index in Yunnan Province from 1958 to 2019, and extracted the spatial-temporal characteristics of dry-wet change in Yunnan Province by empirical orthogonal function (EOF) decomposition method. The result showed that: ① The precipitation increased in the northwest and northeast of Yunnan Province, while in other areas of Yunnan Province, the precipitation decreased to varying degrees. There is little precipitation and intense evaporation in the south, and the drying trend in the south is very significant. The south is the worst-hit area of drought. ② The mean SPEI-3 index showed a significant downward trend, and the trend of drying was obvious throughout the country. The change time occurred in 2007. The cycle of dry and wet change in the study area has a significant change rule on the scale of 26 and 3 years, and the periodic oscillation on the scale of 26 years was the strongest, which was the first main cycle of dry and wet change in Yunnan Province. On the characteristic time scale of 26 years, the average period of dry and wet change in the study area was about 49 years. On the 3 years characteristic time scale, the average cycle of dry and wet change in the study area was about 9 years. ③ The spatial field of wet and dry variation has 6 types. In 1958~2019, there were 19 years in which the whole region got wet and there were 17

References

[1]  Wilhite, D.A. and Glantz, M.H. (1985) Understanding: The Drought Phenomenon: The Role of Definitions. Water In-ternational, 10, 111-120.
https://doi.org/10.1080/02508068508686328
[2]  Mahmood, R., Pielke Sr, R.A., Hub-bard, K.G., et al. (2014) Land Cover Changes and Their Biogeophysical Effects on Climate. International Journal of Climatology, 34, 929-953.
https://doi.org/10.1002/joc.3736
[3]  Nagarajan, R. (2009) Drought Assessment. Capi-tal Publishing Company, Bombay.
[4]  Zhao, H., Gao, G., An, W., et al. (2017) Timescale Differences between SC-PDSI and SPEI for Drought Monitoring in China. Physics and Chemistry of the Earth, Parts A/B/C, 102, 48-58.
https://doi.org/10.1016/j.pce.2015.10.022
[5]  Banimahd, S.A. and Khalili, D. (2013) Factors Influencing Markov Chains Predictability Characteristics, Utilizing SPI, RDI, EDI and SPEI Drought Indices in Different Climatic Zones. Water Resources Management, 27, 3911-3928.
https://doi.org/10.1007/s11269-013-0387-z
[6]  Mavromatis, T. (2007) Drought Index Evaluation for Assessing Future Wheat Production in Greece. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27, 911-924.
https://doi.org/10.1002/joc.1444
[7]  Stagge, J.H., Tallaksen, L.M., Gudmundsson, L., et al. (2015) Candidate Distributions for Climatological Drought Indices (SPI and SPEI). International Journal of Climatology, 35, 4027-4040.
https://doi.org/10.1002/joc.4267
[8]  Tirivarombo, S., Osupile, D. and Eliasson, P. (2018) Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation In-dex (SPI). Physics and Chemistry of the Earth, Parts A/B/C, 106, 1-10.
https://doi.org/10.1016/j.pce.2018.07.001
[9]  Tong, S., Lai, Q., Zhang, J., et al. (2018) Spatiotemporal Drought Variability on the Mongolian Plateau from 1980-2014 Based on the SPEI-PM, Intensity Analysis and Hurst Exponent. Science of the Total Environment, 615, 1557-1565.
https://doi.org/10.1016/j.scitotenv.2017.09.121
[10]  Fan, Z.X. and Thomas, A. (2018) Decadal Changes of Reference Crop Evapotranspiration Attribution: Spatial and Temporal Varia-bility over China 1960-2011. Journal of Hydrology, 560, 461-470.
https://doi.org/10.1016/j.jhydrol.2018.02.080
[11]  罗新兰, 李英歌, 殷红, 等. 东北地区植被NDVI对不同时间尺度SPEI的响应[J]. 生态学杂志, 2020, 39(2): 412-421.
[12]  张晓琳, 熊立华, 林琳, 等. 五种潜在蒸散发公式在汉江流域的应用[J]. 干旱区地理, 2012, 35(2): 229-237.
[13]  Didari, S. and Ahmadi, S.H. (2019) Calibration and Evaluation of the FAO56-Penman-Monteith, FAO24-Radiation, and Priestly-Taylor Reference Evapotranspiration Mod-els Using the Spatially Measured Solar Radiation across a Large Arid and Semi-Arid Area in Southern Iran. Theoretical and Applied Climatology, 136, 441-455.
https://doi.org/10.1007/s00704-018-2497-2
[14]  姚俊强, 杨青, 毛炜峄, 等. 西北干旱区大气水分循环要素变化研究进展[J]. 干旱区研究, 2018, 35(2): 269-276.
[15]  赵慧, 姚俊强, 李新国, 等. 新疆气候干湿变化特征分析[J]. 中山大学学报(自然科学版), 2020, 59(5): 126-133.
[16]  琚建华, 吕俊梅, 谢国清, 等. MJO和AO持续异常对云南干旱的影响研究[J]. 干旱气象, 2011, 29(4): 401-406.
[17]  任菊章, 黄中艳, 郑建萌. 基于相对湿润度指数的云南干旱气候变化特征[J]. 中国农业气象, 2014, 35(5): 567-574.
[18]  郑建萌, 黄玮, 陈艳, 等. 云南极端气象干旱指标的研究[J]. 高原气象, 2017, 36(4): 1039-1051.
[19]  高瑞, 王龙, 张燕明, 等. 基于SPEI的滇中季节性干旱时空特征分析[J]. 云南农业大学学报(自然科学), 2019, 34(3): 516-521.
[20]  Wang, W., Zhu, Y., Xu, R., et al. (2015) Drought Severity Change in China during 1961-2012 Indicated by SPI and SPEI. Natural Hazards, 75, 2437-2451.
https://doi.org/10.1007/s11069-014-1436-5
[21]  施化云, 肖丰. 云南森林资源抗雨雪冰冻灾害能力比较研究[J]. 林业调查规划, 2018, 43(2): 36-41.
[22]  Allen, R.G., Pereira, L.S., Raes, D., et al. (1998) Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome.
[23]  吴利华, 彭汐, 马月伟, 等. 1951~2016年昆明极端气温和降水事件的变化特征[J]. 云南大学学报(自然科学版), 2019, 41(1): 91-104.
[24]  徐波, 陈光富. 滇西北高山冰缘带植物新记录[J]. 广西植物, 2020, 40(12): 1824-1832.
[25]  王玉洁, 周炳江, 黄郑雯, 等. 元江干热河谷林地内外潜在蒸散发量的变化及其驱动因素[J]. 生态学杂志, 2021, 40(2): 501-511.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133